Dementia Japan36:213-223, 2022
Role of astrocytes in memory formation
Ko Matsui
Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University
The role of the added layer of signals encoded in the glial circuit has always been an enigma. Recent findings show that glial cells in the cerebellum react to excitatory transmitter glutamate released from synapses of neurons and glial cells release additional glutamate in return. Glutamate released from glial cells efficiently activated metabotropic glutamate receptors on Purkinje neurons, which is known to be essential for cerebellar motor learning. It is possible that glial cells could have a pivotal role on memory formation. A therapeutic strategy designed to target glial cells could possibly realize memory enhancement for treating dementia.
Address correspondence to Dr. Ko Matsui, Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University(2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan)