‰F’ˆq‹óŠÂ‹«ˆãŠw Vol. 61, No. 2, 65-76, 2024

Œ´’˜

…•½ˆÊ‚©‚ç-30‹“ª’áˆÊ‚ւ̑̈ʕϊ·’¼Œã‚Ì”]ŒŒ—¬‘¬“x‚Æ”]“àŽ_‘f–O˜a“xŽw•W‚̕ω»

‰Á“¡@’qˆê1C¬¼@“§1C2C¬ì—m“ñ˜Y1C–k“‡@Ž¡3C‚–Ø@rˆê3—é–Ø@F_3CŠâú±@Œ«ˆê1

1“ú–{‘åŠwˆãŠw•”@ŽÐ‰ïˆãŠwŒn‰q¶Šw•ª–ì
2–h‰qÈ@q‹óŽ©‰q‘à@q‹óˆãŠwŽÀŒ±‘à
3“ú–{‘åŠwˆãŠw•”@–ƒŒ‰ÈŠwŒn–ƒŒ‰ÈŠw•ª–ì

Changes in cerebral blood velocity and cerebral oxygen saturation immediately afterpostural change from horizontal position to -30‹ head-down tilt

Tomokazu Kato 1, Toru Konishi 1C2, Yojiro Ogawa 1, Osamu Kitajima 3, Shunichi Takagi 3,Takahiro Suzuki 3, Ken-ichi Iwasaki 1

1Department of Social Medicine, Division of Hygiene, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi, Tokyo, Japan
2Aeromedical Laboratory, Japan Air Self-Defense Force, 2-3 Inariyama, Sayama-shi, Saitama, Japan
3Department of Anesthesiology, Division of Anesthesiology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi, Tokyo, Japan

´˜^
@‘̉t‚ª“ª‘¤‚ɕΈʂ·‚éu‘̉t“ª‘¤ƒVƒtƒgv‚𔺂¤‰F’ˆ‘ØÝ‚⓪’áˆÊ‚Ås‚¤• o‹¾Žèp‚Å‚ÍC”]zŠÂƒ‚ƒjƒ^ƒŠƒ“ƒO‚ªd—v‚ƂȂéB‚µ‚©‚µC‘̉t“ª‘¤ƒVƒtƒg‚Ì”­¶’¼Œã‚É‚¨‚¯‚é”]ŒŒ—¬‘¬“x‚â”]“àŽ_‘f–O˜a“xŽw•W‚ð˜A‘±ŒoŽž“I‚É•]‰¿‚µ‚½Œ¤‹†‚͂Ȃ¢B–{Œ¤‹†‚Å‚ÍC…•½ˆÊ‚©‚ç-30‹“ª’áˆÊ‚֑̈ʕϊ·‚µ‚½’¼Œã‚É‚¨‚¢‚ÄC”]ŒŒ—¬‘¬“x‚Æ”]“àŽ_‘f–O˜a“xŽw•W‚ÍC…•½ˆÊ‚Æ”äŠr‚µC—¼ŽÒ‹¤‚É‘‰Á‚·‚邯‚¢‚¤‰¼à‚ð—§‚Ä‚½BŠoÁ‰º‚ÌŒ¤‹†‘ÎÛŽÒ9–¼‚ÉCŒo“ªŠWƒhƒvƒ‰ŒŒ—¬Œv‚Æ‹ßÔŠO•ªŒõŒv‚ðŽg—p‚µ‚ÄC’†‘å”]“®–¬‚Ì•½‹Ï”]ŒŒ—¬‘¬“x‚Æ”]“àŽ_‘f–O˜a“xŽw•W‚̈ê‚‚ł ‚é‹ÇŠ”]“àŽ_‘f–O˜a“x‚𓯎ž‚É‘ª’肵C…•½ˆÊ‚©‚ç-30‹“ª’áˆÊ‚֑̈ʕϊ·‚µ‚½’¼Œã‚Ì—¼ŽÒ‚̕ω»‚ɂ‚¢‚ĘA‘±ŒoŽž“I‚É•]‰¿‚µ‚½B‚»‚ÌÛC‘̈ʕϊ·’¼Œã1•ªŠÔ‚̕ω»‚É‚¨‚¢‚Ä‚ÍC5•b–ˆ‚Ì‹æŠÔ•½‹Ï’l‚Å•]‰¿‚µ‚½B‰Á‚¦‚ÄC‘̈ʕϊ·Œã10•ªŠÔ‚̕ω»‚É‚¨‚¢‚Ä‚ÍC1•ª–ˆ‚Ì‹æŠÔ•½‹Ï’l‚Å•]‰¿‚µ‚½B–{Œ¤‹†Œ‹‰Ê‚É‚¨‚¢‚ÄC‰¼à‚É”½‚µ‚ÄC‘̈ʕϊ·’¼Œã1•ªŠÔ‚É‚¨‚¢‚ÄC•½‹Ï”]ŒŒ—¬‘¬“x‚Ì5•b–ˆ‚Ì‹æŠÔ•½‹Ï’l‚Í—LˆÓ‚ȕω»‚ð”F‚߂Ȃ©‚Á‚½iP=0.286jB‰Á‚¦‚ÄC‘̈ʕϊ·Œã10•ªŠÔ‚É‚¨‚¢‚ÄC•½‹Ï”]ŒŒ—¬‘¬“x‚Ì1•ª–ˆ‚Ì‹æŠÔ•½‹Ï’l‚à—LˆÓ‚ȕω»‚ð”F‚߂Ȃ©‚Á‚½iP=0.093jBˆê•û‚ÅC‹ÇŠ”]“àŽ_‘f–O˜a“x‚Ì5•b–ˆ‚Ì‹æŠÔ•½‹Ï’l‚ÍC…•½ˆÊi68}6%j‚Æ”äŠr‚µC10-15 •b‹æŠÔˆÈ~i71}4%j‚ÅC—LˆÓ‚É‘‰Á‚µ‚½iP > 0.001jB‚³‚ç‚ÉC‘̈ʕϊ·Œã10•ªŠÔ‚É‚¨‚¢‚ÄC‹ÇŠ”]“àŽ_‘f–O˜a“x‚Ì1•ª–ˆ‚Ì‹æŠÔ•½‹Ï’l‚ÍC…•½ˆÊi68}5%j‚Æ”äŠr‚µC0-1•ª‹æŠÔi71}4%jˆÈ~‚Å‘‰Á‚µ‚½ó‘Ô‚ªŽ‘±‚µ‚½iP=0.012jB”]zŠÂƒ‚ƒjƒ^ƒŠƒ“ƒO‚ÌÛC…•½ˆÊ‚©‚ç-30‹“ª’áˆÊ‚ւ̑̈ʕϊ·‚É”º‚¤‘̉t“ª‘¤ƒVƒtƒg”­¶’¼Œã‚Å‚ÍC”]ŒŒ—¬‘¬“x‚Æ”]“àŽ_‘f–O˜a“xŽw•W‚ªˆÙ‚È‚é•ω»‚ðŽ¦‚·‚±‚Æ‚ð”Fޝ‚·‚é•K—v‚ª‚ ‚éB

iReceived:18 November, 2023@Accepted:25 March, 2024j

ƒL[ƒ[ƒh:”]“àŽ_‘f–O˜a“xC”]ŒŒ—¬C”]zŠÂC“ª’áˆÊC‘̉tƒVƒtƒg

I.@‚Í‚¶‚ß‚É
@ƒqƒg‚ª1G‚Ì’nã‚©‚ç–³d—͊‹«‚É‚³‚炳‚ꂽ‚èC’nã‚Å…•½ˆÊ‚à‚µ‚­‚Í—§ˆÊ‚Ìó‘Ô‚©‚瓪‚̈ʒu‚ªS‘Ÿ‚æ‚è‚à’á‚¢“ª’áˆÊ‚Ìó‘Ô‚É‚³‚炳‚ꂽ‚è‚·‚邯C‘̉t•ª•z‚ª“ª‘¤‚ɕΈʂµ‚Ä‚¢‚­Œ»Ûu‘̉t“ª‘¤ƒVƒtƒgv‚ª¶‚¶‚éBƒqƒg‚Í“úí¶Šˆ‚Ì’†‚Å“ª’áˆÊ‚ɂȂé‹@‰ï‚ª­‚È‚¢‚½‚ßC‚±‚̑̉t“ª‘¤ƒVƒtƒg‚ɑ΂µ‚Ä“K‰ž”\—Í‚ª‚‚¢‚Ƃ͌¾‚¦‚È‚¢BŽÀÛC‰F’ˆ”òsŒã‚ÉŽ‹_Œo“û“ª•‚Žî‚ðŠÜ‚ÞŠá•ω»‚â”]Ò‘‰tˆ³‚Ì‚’l1j‚ª•ñ‚³‚ê‚Ä‚¢‚éBŒXŽÎŠp“x‚ª‘å‚«‚¢“ª’áˆÊi–ñ-30‹j‚Ås‚¤ƒƒ{ƒbƒgŽx‰‡‰º• o‹¾Žèp‚Å‚ÍCŽ‹—ÍáŠQ‚â”]•‚Žî2jC•Жƒáƒ3j‚È‚ÇCd“Ăȓª•”‘ŸŠí‚ÌáŠQ‚ª•ñ‚³‚ê‚Ä‚¢‚éB‚Ü‚½C“ª’áˆÊ‚ւ̑̈ʕϊ·‚É‚æ‚Á‚Ä”]“®–¬áŽ‚ª”j—ô‚·‚郊ƒXƒN‚ª‚ ‚邽‚ßC–¢Ž¡—Â̔]“®–¬áŽ‚ð—L‚·‚銳ŽÒ‚̓ƒ{ƒbƒgŽx‰‡‰º• o‹¾Žèp‚Ì“K‰ž‚©‚眊O‚³‚ê‚é4jB‚±‚ê‚ç‚Ì“ª•”‘ŸŠíáŠQ‚Ì—\–h‚ÌŠÏ“_‚©‚çC‰F’ˆ”òs‚âŒXŽÎŠp“x‚ª‘å‚«‚¢“ª’áˆÊ‚𔺂¤Žèp‚É‚¨‚¢‚ÄCŒo“ªŠWƒhƒvƒ‰ŒŒ—¬Œv‚â‹ßÔŠO•ªŒõŒv‚ðŽg—p‚µ‚ÄC”]ŒŒ—¬‘¬“x‚â”]“àŽ_‘f–O˜a“xŽw•W‚ðƒ‚ƒjƒ^ƒŠƒ“ƒO‚·‚邱‚Ƃ͗L—p‚Æl‚¦‚ç‚ê‚éB
@‰F’ˆˆãŠw—̈æ‚É‚¨‚¢‚ÄC“ª’áˆÊ•‰‰×‚ð—p‚¢‚ÄC‘̉t“ª‘¤ƒVƒtƒg‚ª”]ŒŒ—¬‚É‹y‚Ú‚·‰e‹¿‚ɂ‚¢‚ÄŒ¤‹†‚ª‚È‚³‚ê‚Ä‚«‚½BæsŒ¤‹†‚É‚æ‚ê‚ÎC“ª’áˆÊ‚Ì‹}«•‰‰×‚É‚¨‚¢‚ÄC”]ŒŒ—¬‚Í…•½ˆÊ‚Ì…€‚ªˆÛŽ‚³‚ê‚邯l‚¦‚ç‚ê‚é5-8jB‚µ‚©‚µC‚±‚ê‚ç‚ÌæsŒ¤‹†‚Å‚ÍC“ª’áˆÊ•‰‰×’†‚̈ꎞ“_‚à‚µ‚­‚ÍC‚ ‚éˆê‹æŠÔ‚Ì‹æŠÔ•½‹Ï’l‚ÅC”]ŒŒ—¬‚ð•]‰¿‚µ‚Ä‚¨‚èC…•½ˆÊ‚©‚瓪’áˆÊ‚ɑ̈ʕϊ·‚µ‚½’¼Œã‚É‚¨‚¢‚ÄC”]ŒŒ—¬‚ð˜A‘±ŒoŽž“I‚É•]‰¿‚µ‚½Œ¤‹†‚͂Ȃ¢B‚Ü‚½C”]ŒŒ—¬‚ðŒo“ªŠWƒhƒvƒ‰ŒŒ—¬Œv‚Æ‹ßÔŠO•ªŒõŒv“™C•¡”‚Ì•û–@‚Å“¯Žž‚É•]‰¿‚µ‚½•ñ‚àŒ©“–‚½‚ç‚È‚¢B
@æsŒ¤‹†‚©‚ç„‘ª‚·‚邯C…•½ˆÊ‚©‚ç-30‹“ª’áˆÊ‚֑̈ʕϊ·‚µ‚½’¼Œã‚Å‚ÍC”]ŒŒ—¬‘¬“x‚ÍC…•½ˆÊ‚Æ”äŠr‚µC‘‰Á‚·‚é‰Â”\«‚ªl‚¦‚ç‚ê‚é9jBBosone‚ç‚Ì•ñ‚Å‚ÍCŠoÁ‰º‚ÌŒ’íŽÒ‚ð‘ÎÛ‚ÉC…•½ˆÊ‚©‚ç10•ªŠÔ‚Ì-30‹“ª’áˆÊ‚𕉉ׂµ‚½Û‚ÉC•‰‰×ŠJŽn30•bŒã‚©‚ç100•bŠÔ‚Ì”]ŒŒ—¬‘¬“x‚Ì‹æŠÔ•½‹Ï’l‚ÍC…•½ˆÊ‚Æ”äŠr‚µC—LˆÓ‚É‚’l‚ðŽ¦‚µ‚½9jB“ª•”‚ªS‘Ÿ‚æ‚è‚à’á‚¢ˆÊ’u‚Ɉړ®‚·‚邯CÃ…—ÍŠw“Iì—p‚É‚æ‚Á‚ÄC’¼‚¿‚É”]ŒŒŠÇ‚Ì“®–¬ˆ³‚ªã¸‚·‚éB‚»‚ÌŒ‹‰ÊC‘̈ʕϊ·’¼Œã‚É‚¨‚¢‚ÄC”]ŒŒ—¬‘¬“x‚ª‘‰Á‚·‚邯„‘ª‚³‚ê‚éB
@“¯—l‚ÉC…•½ˆÊ‚©‚ç-30‹“ª’áˆÊ‚֑̈ʕϊ·‚µ‚½’¼Œã‚Å‚ÍC‹ßÔŠO•ªŒõŒv‚Å‘ª’肳‚ê‚é”]“àŽ_‘f–O˜a“xŽw•W‚à‘‰Á‚·‚é‰Â”\«‚ªl‚¦‚ç‚ê‚é10j,11jBJin‚ç‚Ì•ñ‚Å‚ÍC• o‹¾‰ºŒ‹’°’¼’°Øœp‚ÅC…•½ˆÊ‚ÌŽ·“ŠJŽn‘O‚Æ”äŠr‚µC“ª’áˆÊi-20‹`-30‹j‚Æ‹C• i• o‹¾Žèp‚ÌÛ‚É“ñŽ_‰»’Y‘fƒKƒX‚ð• o“à‚É’“ü‚µC• o‚ð–c‚ç‚Ü‚¹‚邱‚Ƃɂæ‚Á‚Äp–ìiŽ‹–ìj‚ðŠm•Û‚·‚é‘€ìj‚ÌŠJŽn5•ªŽž“_‚Å”]“àŽ_‘f–O˜a“xŽw•W‚Í—LˆÓ‚É‘‰Á‚µCˆÈ~‚»‚Ì‘‰Á‚ªŽ‘±‚µ‚½10jBPark‚ç‚Ì•ñ‚Å‚ÍCƒƒ{ƒbƒgŽx‰‡‰º• o‹¾‰º‘O—§‘B‘S“Eœp‚ÅC…•½ˆÊ‚ł̖ƒŒ“±“üŽž“_‚Æ”äŠr‚µC-30‹“ª’áˆÊ‚Æ‹C• ‚ÌŠJŽn‚©‚ç30•ªC60•ªC120•ªŽž“_‚ÅC”]“àŽ_‘f–O˜a“xŽw•W‚Í—LˆÓ‚É‘‰Á‚µ‚½11jB‚±‚ê‚ç‚ÌæsŒ¤‹†‚©‚çCˆê‚‚̉”\«‚Æ‚µ‚ÄC…•½ˆÊ‚©‚ç-30‹“ª’áˆÊ‚ɑ̈ʕϊ·‚·‚邯C”]“àŽ_‘f–O˜a“xŽw•W‚ÍC…•½ˆÊ‚Æ”äŠr‚µC‘‰Á‚·‚邯l‚¦‚ç‚ê‚éB‚µ‚©‚µC‚±‚ê‚ç‚ÌæsŒ¤‹†‚Å‚ÍCp’†‚É”]“àŽ_‘f–O˜a“xŽw•W‚𑪒肵‚Ä‚¢‚邽‚ßC“ª’áˆÊ‚̈öŽq‚ɉÁ‚¦C‹C• ‚⊳ŽÒ”wŒiC‘Sg–ƒŒC—A‰t‚É‚æ‚錌‰t”Z“x‚̕ω»“™C”]“àŽ_‘f–O˜a“xŽw•W‚ɉe‹¿‚ð‹y‚Ú‚·‰Â”\«‚Ì‚ ‚éŒð—ˆöŽq‚ª‘½”‘¶Ý‚·‚éB‚Ü‚½C…•½ˆÊ‚©‚ç-30‹“ª’áˆÊ‚ւ̑̈ʕϊ·’¼Œã‚Ì”]“àŽ_‘f–O˜a“xŽw•W‚̕ω»‚ɂ‚¢‚Ă͌Ÿ“¢‚³‚ê‚Ä‚¢‚È‚¢B
@‚±‚̂悤‚ÉæsŒ¤‹†‚©‚çC…•½ˆÊ‚©‚ç-30‹“ª’áˆÊ‚֑̈ʕϊ·‚µ‚½’¼Œã‚É‚¨‚¢‚ÄC”]ŒŒ—¬‘¬“x‚Æ”]“àŽ_‘f–O˜a“xŽw•W‚ÍC…•½ˆÊ‚Æ”äŠr‚µC—¼ŽÒ‹¤‚É‘‰Á‚·‚邯‚¢‚¤‰Â”\«‚ªl‚¦‚ç‚ê‚éB‚µ‚©‚µC‘Oq‚Ì’Ê‚èC…•½ˆÊ‚©‚瓪’áˆÊ‚֑̈ʕϊ·‚µ‚½’¼Œã‚Ì”]ŒŒ—¬‘¬“x‚Æ”]“àŽ_‘f–O˜a“xŽw•W‚̕ω»‚ð˜A‘±ŒoŽž“I‚ÉŠÏŽ@‚µ‚½Œ¤‹†‚͂Ȃ­C‚³‚ç‚ÉC—¼Žw•W‚𓯎ž‚ÉŒv‘ª‚µ‚½Œ¤‹†‚͂Ȃ¢B–{Œ¤‹†‚Å‚ÍCŠoÁ‰º‚ÌŒ’N‚ÈŒ¤‹†‘ÎÛŽÒ‚ÉCŒo“ªŠWƒhƒvƒ‰ŒŒ—¬Œv‚Æ‹ßÔŠO•ªŒõŒv‚ðŽg—p‚µ‚ÄC•½‹Ï”]ŒŒ—¬‘¬“x‚Æ”]“àŽ_‘f–O˜a“xŽw•W‚̈ê‚‚ł ‚é‹ÇŠ”]“àŽ_‘f–O˜a“x‚𓯎ž‚É‘ª’肵C…•½ˆÊ‚©‚ç-30‹“ª’áˆÊ‚֑̈ʕϊ·‚µ‚½’¼Œã‚Ì—¼ŽÒ‚̕ω»‚ɂ‚¢‚ĘA‘±ŒoŽž“I‚É•]‰¿‚µ‚½B‚»‚ÌÛC‘̈ʕϊ·’¼Œã1•ªŠÔ‚Ì‹}«Šú•ω»‚É‚¨‚¢‚Ä‚ÍC5•b–ˆ‚Ì‹æŠÔ•½‹Ï’l‚Å•]‰¿‚µ‚½B‰Á‚¦‚ÄC‘̈ʕϊ·Œã10•ªŠÔ‚̈Ÿ‹}«Šú•ω»‚É‚¨‚¢‚Ä‚ÍC1•ª–ˆ‚Ì‹æŠÔ•½‹Ï’l‚Å•]‰¿‚µ‚½B

II.@•û–@
—Ï—
@–{Œ¤‹†‚Í, “ú–{‘åŠwˆãŠw•”—Ï—ˆÏˆõ‰ï‚̳”Fi³”F”Ô†P20-02-0, ³”F“ú —ߘa2”N5ŒŽ7“új‚ðŽó‚¯, ‘åŠw•a‰@ˆã—Ãî•ñƒlƒbƒgƒ[ƒNƒZƒ“ƒ^[iUMINj—Õ°ŽŽŒ±“o˜^ƒVƒXƒeƒ€‚É“o˜^‚µiUMIN000040757jCuƒwƒ‹ƒVƒ“ƒL錾v‚âul‚ð‘ÎÛ‚Æ‚·‚éˆãŠwŒ¤‹†‚ÉŠÖ‚·‚é—Ï—Žwjv‚ð…Žç‚µŽÀŽ{‚µ‚½B
Œ¤‹†‘ÎÛŽÒ
@Œ’N¬l9–¼ i’j«5–¼C—«4–¼C”N—î33.6­}7.0ÎCg’·167.9­}4.8 cmC‘Ìd62.2­}7.7 kgC•½‹Ï­}•W€•ηj‚ðŒ¤‹†‘ÎÛŽÒ‚Æ‚µ‚½BŒ¤‹†“à—e‚ɂ‚¢‚ÄŒ¤‹†Œv‰æ‘‚ð—p‚¢‚Äà–¾‚µC•¶‘‚ɂē¯ˆÓ‚𓾂½BŽQ‰ÁðŒ‚Æ‚µ‚ÄC–âf‚¨‚æ‚ÑŒ’Nf’fŒ‹‰Ê‚Ì’®Žæ‚É‚æ‚èC”]zŠÂESzŠÂŒn‚ɉe‹¿‚ð‹y‚Ú‚·Ž¾Š³‚ÌŠù‰—ð‚ª‚È‚¢‚±‚ÆCS“d}ŒŸ¸‚⌌ˆ³‘ª’è‚ňÙ킪‚È‚¢‚±‚ÆCŒo“ªŠWƒhƒvƒ‰ŒŒ—¬Œv‚ð—p‚¢‚ĉE’†‘å”]“®–¬‚Ì”]ŒŒ—¬‘¬“x”gŒ`‚ª•`o‚Å‚«‚邱‚ƂƂµ‚½B‚Ü‚½CŽ–‘O‚É-30‹“ª’áˆÊ‚ð‘ÌŒ±‚³‚¹C•s®–¬‚â‹C•ª•s‰õ‚ª¶‚¶‚È‚¢‚±‚Æ‚ðŠm”F‚µ‚½BŽÀŒ±ŠJŽn24ŽžŠÔ‘O‚æ‚èƒJƒtƒFƒCƒ“CƒAƒ‹ƒR[ƒ‹ÛŽæCŒƒ‚µ‚¢‰^“®‚ð‹ÖŽ~‚µ‚½B‚Ü‚½CŽÀŒ±ŠJŽn2ŽžŠÔ‘O‚æ‚èHŽ–‚ð‹ÖŽ~‚µ‚½B
ŽÀŒ±‘•’u
@ŽÀŒ±‚ÍŽº‰·20-26Ž‚©‚“ñŽ_‰»’Y‘f”Z“x1,000 ppmˆÈ‰º‚ÉŠÇ—‚³‚ꂽŽÀŒ±Žº‚ÅŽÀŽ{‚³‚ꂽBŒ¤‹†‘ÎÛŽÒ‚ð…•½ˆÊ‚Ì“d“®ƒeƒBƒ‹ƒgƒxƒbƒh iMinato Medical ScienceC‘åãC“ú–{jã‚ɋ‰çˆÊ‚Ìó‘Ô‚É‚µCS””‚¨‚æ‚ÑŒo”ç“I“®–¬ŒŒŽ_‘f–O˜a“xCŒÄ‹CI––“ñŽ_‰»’Y‘f•ªˆ³‚𑪒肷‚邽‚ß‚ÉCS“d}Œv‚¨‚æ‚ÑŒo”ç“I“®–¬ŒŒŽ_‘f–O˜a“xƒ‚ƒjƒ^iLifescope BSM-3800;“ú–{Œõ“dC“Œ‹žC“ú–{jCŒÄ‹C’YŽ_ƒKƒXƒ‚ƒjƒ^iOLG-2800;“ú–{Œõ“dC“Œ‹žC“ú–{j‚ð‘•’…‚µ‚½B‰E’†‘å”]“®–¬‚Ì”]ŒŒ—¬‘¬“x”gŒ`‚𑪒肷‚邽‚ß‚ÉCŒo“ªŠWƒhƒvƒ‰ŒŒ—¬ŒviEZ-Dop;Compumedics Germany GmbHCƒVƒ…ƒvƒŠƒ“ƒQƒ“CƒhƒCƒcj‹y‚Ñ2 MHzƒvƒ[ƒu‚ðŽg—p‚µ‚½B•‰‰×’†‚ÉŒo“ªŠWƒhƒvƒ‰ŒŒ—¬Œv‚̃vƒ[ƒu‚̈ʒu‚ªˆÚ“®‚µ‚È‚¢‚悤‚ÉCŽ•‰È—pˆóÛÞ‚ð—p‚¢‚ÄŠeŒ¤‹†‘Îێ҂̉E‘¤“ª•”‚ƉEŠOލ‚ÌŒ`ó‚ɇ’v‚µ‚½ŒÅ’è‹ï‚ð쬂µ‚½B‹ÇŠ”]“àŽ_‘f–O˜a“x‚𑪒肷‚邽‚ß‚ÉC‰E‘OŠz•”‚É‹ßÔŠO•ªŒõŒviINVOS SPS;CovidienCƒ}ƒ“ƒXƒtƒB[ƒ‹ƒhCƒ}ƒTƒ`ƒ…[ƒZƒbƒcBC•Ä‘j‚̃Zƒ“ƒT[‚ð‘•’…‚µ‚½BŽw“®–¬‚Ì“®–¬ŒŒˆ³”gŒ`‚𑪒肷‚邽‚ß‚ÉC”ñŠÏŒŒ“I˜A‘±ŒŒˆ³ŒviFinometer MIDI;Finapres Medical SystemsCƒAƒ€ƒXƒeƒ‹ƒ_ƒ€CƒIƒ‰ƒ“ƒ_j‚ðŽg—p‚µCŽwƒJƒt‚ð¶’†Žw‚É‘•’…‚µ‚½BƒnƒCƒgƒZƒ“ƒT[‚ð¶ã˜r‚ÌS‘Ÿ‚Ì‚‚³iãüâ|’†ü‚ÆŒ•ó“Ë‹N‚ÌŒð“_j‚É‘•’…‚µ‚½BŽÀŒ±ŠJŽn’¼‘O‚ÉCŒŒˆ³‘ª’è—pƒJƒtiLifescope BSM-3800;“ú–{Œõ“dC“Œ‹žC“ú–{j‚Å‘ª’肵‚½•½‹ÏŒŒˆ³‚Æ”äŠr‚µC”ñŠÏŒŒ“I˜A‘±ŒŒˆ³Œv‚Å‘ª’肵‚½•½‹ÏŒŒˆ³‚Ì’l‚Ƃ̷‚ª10 mmHgˆÈ“à‚Å‚ ‚邱‚Æ‚ðŠm”F‚µ‚½B
ŽÀŒ±Žè‡
@ŽÀŒ±‚̃vƒƒgƒR[ƒ‹‚ð}1‚ÉŽ¦‚·B‚Ü‚¸C…•½ˆÊ‚̃eƒBƒ‹ƒgƒxƒbƒgã‚Å15•ªˆÈãC‹Â‰çˆÊ‚ňÀÂɂµ‚½Bˆø‚«‘±‚«C1•ªŠÔC…•½ˆÊ‚Ìó‘Ô‚ðˆÛŽ‚µ‚½ŒãC“d“®ƒeƒBƒ‹ƒgƒxƒbƒh‚ÌŒXŽÎŠp“x‚ð…•½ˆÊ‚©‚ç-30‹“ª’áˆÊ‚É•ÏX‚µC10•ªŠÔC-30‹“ª’áˆÊ‚Ìó‘Ô‚ðˆÛŽ‚µ‚½BƒeƒBƒ‹ƒgƒxƒbƒh‚ÌŒXŽÎŠp“x‚Ì•ÏX‚Í“d“®§Œä‚ÅC…•½ˆÊ‚©‚ç-30‹“ª’áˆÊŠ®—¹‚܂ł̊—vŽžŠÔ‚Í‘SŽÀŒ±ˆê—¥25•b‚¾‚Á‚½B10•ªŠÔ‚Ì-30‹“ª’áˆÊI—¹ŒãC“d“®ƒeƒBƒ‹ƒgƒxƒbƒh‚ð…•½ˆÊ‚É–ß‚µCƒoƒCƒ^ƒ‹ƒTƒCƒ“‚É–â‘肪‚È‚¢‚±‚Æ‚ðŠm”F‚µ‚ÄŽÀŒ±I—¹‚Æ‚µ‚½B



}1.@Experimental protocol.@Prior to the start of the experiment, participants rested in a supine position on a tilt bed in a horizontal position for at least 15 minutes.@First, data were recorded for 1 minute in the horizontal position iHorizontal dataj.@Then, the tilt angle of the electric tilt bed was changed to -30‹ head-down tilt iHDTj by electric control in 25 seconds.@Data were recorded for 10 minutes during -30‹ HDT i-30‹HDT dataj.@The electric tilt bed was returned to the horizontal position, and the experiment was ended after confirming that there were no problems with the vital signs during recovery phase.@The horizontal data at 5 seconds prior to the start of the tilting bed and the initial 1 minute of -30‹ HDT data were averaged every 5 seconds.@The 1-minute horizontal data and the entire 10-minute -30‹ HDT data were averaged every minute.


ƒf[ƒ^‰ðÍ
@‘½ƒ`ƒƒƒ“ƒlƒ‹¶‘Ìî•ñŽæ“¾ƒVƒXƒeƒ€iNotocord-hem 3.3;NotocordCƒpƒŠCƒtƒ‰ƒ“ƒXj‚ð—p‚¢‚ÄC“®–¬ŒŒˆ³”gŒ`‚¨‚æ‚Ñ”]ŒŒ—¬‘¬“x”gŒ`CS“d}”gŒ`CŒÄ‹C“ñŽ_‰»’Y‘f•ªˆ³”gŒ`‚ð1 kHz‚Å‹L˜^‚µC‹L˜^‚³‚ꂽ”gŒ`ƒf[ƒ^‚©‚çCˆêS”‚²‚Æ‚ÌS‘ŸƒŒƒxƒ‹‚Ì•½‹Ï“®–¬ŒŒˆ³‚Æ•½‹Ï”]ŒŒ—¬‘¬“xCˆêŒÄ‹z‚²‚Ƃ̌ċCI––“ñŽ_‰»’Y‘f•ªˆ³‚ðŒŸo‚µ‚½B’†‘å”]“®–¬‚Ì‚‚³iŠOލEj‚ÆS‘Ÿ‚Ì‚‚³iŒ•ó“Ë‹Nj‚Ì·‚ðŒv‘ª‚µC’†‘å”]“®–¬-S‘ŸŠÔ‚ÌÃ…ˆ³‚ðˆÈ‰º‚ÌŒvŽZŽ®‚ÅŽZo‚µC’†‘å”]“®–¬-S‘ŸŠÔ‚ÌÃ…ˆ³‚ðS‘ŸƒŒƒxƒ‹‚Ì•½‹Ï“®–¬ŒŒˆ³‚ɉÁŽZ‚µC’†‘å”]“®–¬ƒŒƒxƒ‹‚Ì•½‹Ï“®–¬ŒŒˆ³‚ðŽZo‚µ‚½B
@’†‘å”]“®–¬-S‘ŸŠÔ‚ÌÃ…ˆ³immHgj’†‘å”]“®–¬-S‘ŸŠÔ‚Ì‹——£icmj~ 1.06/13.6 ~ 10
@ƒxƒbƒgƒTƒCƒhƒ‚ƒjƒ^iLife scope BSM-1763;“ú–{Œõ“dC“Œ‹žC“ú–{j‚ð—p‚¢‚Ä0.3 Hz‚Å‹L˜^‚³‚ꂽ‹ÇŠ”]“àŽ_‘f–O˜a“x‚¨‚æ‚ÑŒo”ç“I“®–¬ŒŒŽ_‘f–O˜a“x‚ðCê—p‚̃\ƒtƒgƒEƒFƒAiBSM PC-Viewer;“ú–{Œõ“dC“Œ‹žC“ú–{j‚ð—p‚¢‚Ä’Šo‚µ‚½B
‹}«Šú•ω»i5•b–ˆ‚Ì‹æŠÔ•½‹Ï’lj
@10•ªŠÔ‚Ì-30‹“ª’áˆÊ‚̃f[ƒ^‚Ì‚¤‚¿C“d“®ƒeƒBƒ‹ƒgƒxƒbƒh‚ÌŒXŽÎŠp“x‚ª-30‹‚É’B‚µ‚½Žž“_‚©‚çʼn‚Ì1•ªŠÔ‚̃f[ƒ^‚É‚¨‚¢‚ÄC0-5•b‹æŠÔC5-10•b‹æŠÔC10-15•b‹æŠÔC15-20•b‹æŠÔC20-25•b‹æŠÔC25-30•b‹æŠÔC30-35•b‹æŠÔC35-40•b‹æŠÔC40-45•b‹æŠÔC45-50•b‹æŠÔC50-55•b‹æŠÔC55-60•b‹æŠÔ‚Ì12‹æŠÔ‚É•ª‚¯CŠe•Ï”‚Ì5•b–ˆ‚Ì‹æŠÔ•½‹Ï’l‚ðŽZo‚µ‚½B‚Ü‚½CŒXŽÎŠJŽn’¼‘O5•bŠÔ‚Ì…•½ˆÊ‚Ì‹æŠÔ•½‹Ï’l‚ðŽZo‚µ‚½B
ˆŸ‹}«Šú•ω»i1•ª–ˆ‚Ì‹æŠÔ•½‹Ï’lj
@10•ªŠÔ‚Ì‘S-30‹“ª’áˆÊ‚̃f[ƒ^‚É‚¨‚¢‚ÄC“d“®ƒeƒBƒ‹ƒgƒxƒbƒh‚ÌŒXŽÎŠp“x‚ª-30‹‚É’B‚µ‚½Žž“_‚©‚çC0-1•ª‹æŠÔC1-2•ª‹æŠÔC2-3•ª‹æŠÔC3-4•ª‹æŠÔC4-5•ª‹æŠÔC5-6•ª‹æŠÔC6-7•ª‹æŠÔC7-8•ª‹æŠÔC8-9•ª‹æŠÔC9-10•ª‹æŠÔ‚Ì10‹æŠÔ‚É•ª‚¯CŠe•Ï”‚Ì1•ª–ˆ‚Ì‹æŠÔ•½‹Ï’l‚ðŽZo‚µ‚½B‚Ü‚½C1•ªŠÔ‚Ì…•½ˆÊ‚Ì‹æŠÔ•½‹Ï’l‚ðŽZo‚µ‚½B
@2—á‚ÌŒ¤‹†‘ÎÛŽÒ‚É‚¨‚¢‚ÄC-30‹“ª’áˆÊ‚ւ̑̈ʕϊ·Œã‚©‚çŽw“®–¬‚Ì“®–¬ŒŒˆ³”gŒ`‚ªŒŸo‚Å‚«‚È‚©‚Á‚½‚½‚ßCS‘ŸƒŒƒxƒ‹‚Ì•½‹Ï“®–¬ˆ³‚¨‚æ‚Ñ”]ƒŒƒxƒ‹‚Ì•½‹Ï“®–¬ˆ³‚̉ðÍ‚©‚眊O‚µ‚½B‚Ü‚½C1—á‚ÌŒ¤‹†‘ÎÛŽÒ‚É‚¨‚¢‚ÄC•‰‰×‘O…•½ˆÊ‚ÌŽž“_‚ÅC‹ÇŠ”]“àŽ_‘f–O˜a“x‚ª50%ˆÈ‰º‚¾‚Á‚½‚½‚ßC‹ÇŠ”]“àŽ_‘f–O˜a“x‚̉ðÍ‚©‚眊O‚µ‚½B
@³‹K«‚ÍKolmogorov-SmirnovŒŸ’è‚ðŽg—p‚µC“™•ªŽU«‚ÍBrown-ForsytheŒŸ’è‚ðŽg—p‚µ‚Ä•]‰¿‚µ‚½B³‹K«‹y‚Ñ“™•ªŽU«‚ªŠm”F‚Å‚«‚½•Ï”‚ɂ‚¢‚Ä‚ÍCˆêŒ³”z’u”½•œ‘ª’蕪ŽU•ªÍione-way repeated-measures analysis of variance;ANOVAj‚ðs‚Á‚½ŒãCŽ–ŒãŒŸ’è‚Æ‚µ‚ÄCStudent-Newman-Keuls–@‚Å‘½d”äŠrŒŸ’è‚ðs‚Á‚½B‚Ü‚½C³‹K«‹y‚Ñ“™•ªŽU«‚ªŠm”F‚Å‚«‚È‚©‚Á‚½•Ï”‚ɂ‚¢‚Ä‚ÍCFriedmanŒŸ’è‚ðs‚Á‚½ŒãCStudent-Newman-Keuls–@‚Å‘½d”äŠrŒŸ’è‚ðs‚Á‚½BP’l‚ª0.05–¢–ž‚ð“ŒvŠw“I‚É·‚ª”F‚ß‚ç‚ê‚邯”»’f‚µ‚½B“Œv‰ð͂ɂÍCSigmaPlot version 14.5ƒ\ƒtƒgƒEƒFƒAiSystat Software Inc CƒTƒ“ƒmƒ[CƒJƒŠƒtƒHƒ‹ƒjƒABC•Ä‘j‚ð—p‚¢‚½B

III.Œ‹@@@‰Ê
‹}«Šú•ω»i5•b–ˆ‚Ì‹æŠÔ•½‹Ï’lj
@‘SŽw•W‚ÌŠeƒf[ƒ^‹æŠÔ‚ÌŒ‹‰Ê‚ð•\1‚ÉŽ¦‚·B•½‹Ï”]ŒŒ—¬‘¬“xiN=9j‚ÍC‘S‹æŠÔ‚É‚¨‚¢‚Ä—LˆÓ‚ȕω»‚Í”F‚߂Ȃ©‚Á‚½iP=0.286, FriedmanŒŸ’èji}2AjB‹ÇŠ”]“àŽ_‘f–O˜a“xiN=8, P < 0.001, FriedmanŒŸ’èj‚ÍC…•½ˆÊ‚Æ”äŠr‚µC-30‹“ª’áˆÊ‚Ì10-15•b‹æŠÔˆÈ~‚Å—LˆÓ‚É‘‰Á‚µ‚½i}2BjB‚Ü‚½C-30‹“ª’áˆÊ‚Ì0-5•b‹æŠÔ‚Æ”äŠr‚µC10-15•b‹æŠÔˆÈ~‚Å—LˆÓ‚É‘‰Á‚µ‚½B-30‹“ª’áˆÊ‚Ì5-10•b‹æŠÔ‚Æ”äŠr‚µC10-15•b‹æŠÔˆÈ~‚Å—LˆÓ‚É‘‰Á‚µ‚½B-30‹“ª’áˆÊ‚Ì10-15•b‹æŠÔ‚Æ”äŠr‚µC15-20•b‹æŠÔˆÈ~‚Å—LˆÓ‚É‘‰Á‚µ‚½BS”” iN=9j‚ÍC‘S‹æŠÔ‚É‚¨‚¢‚Ä—LˆÓ‚ȕω»‚Í”F‚߂Ȃ©‚Á‚½iP=0.768, ANOVAji}3AjBS‘ŸƒŒƒxƒ‹‚Ì•½‹Ï“®–¬ŒŒˆ³ iN=7j‚ÍC‘S‹æŠÔ‚É‚¨‚¢‚Ä—LˆÓ‚ȕω»‚Í”F‚߂Ȃ©‚Á‚½iP=0.189, FriedmanŒŸ’èji}3BjB”]ƒŒƒxƒ‹‚Ì•½‹Ï“®–¬ŒŒˆ³ iN=7, P=0.002, FriedmanŒŸ’èj‚ÍC…•½ˆÊ‚Æ”äŠr‚µC-30‹“ª’áˆÊ‚Ì0-5•b‹æŠÔˆÈ~‚Å—LˆÓ‚É‘‰Á‚µ‚½i}3CjBŒÄ‹CI––“ñŽ_‰»’Y‘f•ªˆ³iN=9, P=0.003, FriedmanŒŸ’èj‚ÍC…•½ˆÊ‚Æ”äŠr‚µC-30‹“ª’áˆÊ‚Ì0-5•b‹æŠÔ‚ÅC—LˆÓ‚ɒቺ‚µ‚½i}3DjBŒo”ç“I“®–¬ŒŒŽ_‘f–O˜a“xiN=9j‚ÍFriedmanŒŸ’è‚Å—LˆÓ‚ȕω»‚ðŽ¦‚µ‚½‚ªiP=0.003jCŽ–ŒãŒŸ’è‚ł͗LˆÓ‚ȕω»‚Í”F‚߂Ȃ©‚Á‚½i}3EjB



}2.@Group average and individual time-courses of acute changes in 5-seconds averages of mean cerebral blood velocity in the middle cerebral artery iMCAvj iAj and regional cerebral oxygen saturation irSO2j iBj in the initial 1-minute of -30‹ head-down tilt iHDTj.@Horizontal, 5-seconds average of data in the horizontal body position;0-5, 5-10, 10-15, 15-20, 20-25, 25-30, 30-35, 35-40, 40-45, 45-50, 50-55, 55-60, 5-seconds averages of the 0-5 second, 5-10 second, 10-15 second, 15-20 second, 20-25 second, 25-30 second, 30-35 second, 35-40 second, 40-45 second, 45-50 second, 50-55 second, 55-60 second data segments during -30‹ HDT.@White iHorizontal dataj and grey i-30‹ HDT dataj bars with error bars represent the average values and SDs. *P < 0.05 ivs. Horizontalj, #P < 0.001 ivs. 0-5j, $P < 0.001 ivs. 5-10j, õP < 0.01 ivs. 10-15j iP-value of post hoc test by Student-Newman-Keuls methodj.



}3.@Group average and individual time-courses of acute changes in 5-seconds averages of hemodynamics and respiratory conditions in the initial 1-minute of -30‹ head-down tilt iHDTj.

@@@HR iAj, heart rate;MAPHeart, mean arterial pressure in the heart level iBj;MAPBrain, mean arterial pressure in the brain level iCj;EtCO2, endo-tidal carbon dioxide pressure iDj;SpO2, arterial oxygen saturation iEj.@Horizontal, 5-seconds average of data in the horizontal body position;0-5, 5-10, 10-15, 15-20, 20-25, 25-30, 30-35, 35-40, 40-45, 45-50, 50-55, 55-60, 5-seconds averages of the 0-5 sec, 5-10 second, 10-15 second, 15-20 second, 20-25 second, 25-30 second, 30-35 second, 35-40 second, 40-45 second, 45-50 second, 50-55 second, 55-60 second data segments during -30‹ HDT.@White iHorizontal dataj and grey i-30‹ HDT dataj bars with error bars represent the average values and SDs. *P < 0.001 ivs. Horizontalj.@P-value of post hoc test by Student-Newman-Keuls method.


Table 1. 5-seconds of averages of hemodynamics and respiratory condition in the horizontal position and during the initial 1-minute of -30‹ head-down tilt
Horizontal -30‹HDT P-value
0-5
second
5-10
second
10-15
second
15-20
second
20-25
second
25-30
second
30-35
second
35-40
second
40-45
second
45-50
second
50-55
second
55-60
second
MCAv icm/sj iN=9j 68}9 65}12 65}11 67}11 65}12 65}11 66}13 67}13 68}13 68}12 68}11 67}11 67}11 0.286iFj
rSO2 i%j iN=8j 68}6 68}6 69}5 70}4*#$ 71}5*#$õ 71}4*#$õ 71}4*#$õ 71}4*#$õ 71}4*#$õ 71}4*#$õ 71}4*#$õ 71}4*#$õ 71}4*#$õ < 0.001iFj
HR i/minj iN=9j 64}8 63}10 63}10 65}10 64}11 64}9 64}9 64}9 64}9 64}9 65}10 65}9 65}9 0.768iAj
MAPHeart immHgj iN=7j 78}14 77}13 75}14 76}13 76}12 77}11 78}12 79}11 79}10 79}10 79}11 79}11 79}11 0.189iFj
MAPBrain immHgj iN=7j 78}14 88}13* 87}14* 88}13* 88}12* 89}11* 90}12* 91}11* 91}10* 91}10* 91}12* 91}11* 91}12* 0.002iFj
EtCO2 iTorrj iN=9j 37}3 35}4* 37}2 37}2 37}2 38}3 38}3 37}3 37}4 36}6 38}3 37}2 38}2 0.003iFj
SpO2 i%j iN=9j 97}1 98}1 98}1 98}1 98}1 98}1 98}1 98}1 98}1 98}1 98}1 98}1 98}1 0.003iFj
Values are mean}SD. MCAv, mean cerebral blood velocity in the middle cerebral artery; rSO2, regional cerebral oxygen saturation; HR, heart rate; MAPHeart, mean arterial pressure in the heart level; MAPBrain, mean arterial pressure in the brain level; EtCO2, end-tidal carbon dioxide pressure; SpO2, arterial oxygen saturation. P-value are expressed as one-way repeated-measures analysis of variance with data segment as a factor (A) or Friedman tests with data segment as a factor (F). *P < 0.01 (vs. Horizontal), #P < 0.05 (vs. 0-5 second), $P < 0.001 (vs. 5-10 second), õP < 0.01 (vs. 10-15 second).

ˆŸ‹}«Šú•ω» i1•ª–ˆ‚Ì‹æŠÔ•½‹Ï’lj
@‘SŽw•W‚ÌŠeƒf[ƒ^‹æŠÔ‚ÌŒ‹‰Ê‚ð•\2‚ÉŽ¦‚·B•½‹Ï”]ŒŒ—¬‘¬“xiN=9j‚ÍC‘S‹æŠÔ‚É‚¨‚¢‚Ä—LˆÓ‚ȕω»‚Í”F‚߂Ȃ©‚Á‚½iP=0.093, FriedmanŒŸ’èji}4AjB‹ÇŠ”]“àŽ_‘f–O˜a“xiN=8, P=0.012, FriedmanŒŸ’èj‚ÍC…•½ˆÊ‚Æ”äŠr‚µC“ª’áˆÊ0-1•ª‹æŠÔˆÈ~‚Å—LˆÓ‚É‘‰Á‚µ‚½i}4BjBS””iN=9j‚Í‘S‹æŠÔ‚É‚¨‚¢‚Ä—LˆÓ‚ȕω»‚Í”F‚߂Ȃ©‚Á‚½iP=0.115, ANOVAji}5AjBS‘ŸƒŒƒxƒ‹‚Ì•½‹Ï“®–¬ŒŒˆ³iN=7j‚à‘S‹æŠÔ‚É‚¨‚¢‚Ä—LˆÓ‚ȕω»‚Í”F‚߂Ȃ©‚Á‚½iP=0.300, FriedmanŒŸ’èji}5BjB”]ƒŒƒxƒ‹‚Ì•½‹Ï“®–¬ŒŒˆ³iN=7, P < 0.001, FriedmanŒŸ’èj‚ÍC…•½ˆÊ‚Æ”äŠr‚µC“ª’áˆÊ0-1•ª‹æŠÔˆÈ~‚Å—LˆÓ‚É‘‰Á‚µ‚½i}5CjBŒÄ‹CI––“ñŽ_‰»’Y‘f•ªˆ³iN=9j‚ÍANOVA‚Å—LˆÓ‚ȕω»‚ðŽ¦‚µ‚½‚ªiP=0.048jCŽ–ŒãŒŸ’è‚ł͗LˆÓ‚ȕω»‚Í”F‚߂Ȃ©‚Á‚½i}5DjBŒo”ç“I“®–¬ŒŒŽ_‘f–O˜a“xiN=9j‚ÍFriedmanŒŸ’è‚Å—LˆÓ‚ȕω»‚ðŽ¦‚µ‚½‚ªiP < 0.001jCŽ–ŒãŒŸ’è‚ł͗LˆÓ‚ȕω»‚Í”F‚߂Ȃ©‚Á‚½i}5EjB





}4.@Group average and individual time-courses of subacute changes in 1-minute average of mean cerebral blood velocity in the middle cerebral artery iMCAvj iAj and regional cerebral oxygen saturation irSO2j iBj during 10-minutes -30‹ head-down tilt iHDTj.@Horizontal, 1-minute average of data in the horizontal body position;0-1, 1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8, 8-9 and 9-10, 1-minute averages of the 0-1 minute, 1-2 minute, 2-3 minute, 3-4 minute, 4-5 minute, 5-6 minute, 6-7 minute, 7-8 minute, 8-9 minute and 9-10 minute data segments during -30‹ HDT. White iHorizontal dataj and grey i-30‹ HDT dataj bars with error bars represent the average values and SDs of the 10 participants.@*P < 0.05 ivs. Horizontalj.@P-value of post hoc test by Student-Newman-Keuls method.

}5.@Group average and individual time-courses of subacute changes in 1-minute average of hemodynamics and respiratory conditions in the initial 1-minute of -30‹ head-down tilt iHDTj.

@@@HR iAj, heart rate;MAPHeart, mean arterial pressure in the heart level iBj;MAPBrain, mean arterial pressure in the brain level iCj;EtCO2, end-tidal carbon dioxide pressure iDj;SpO2, arterial oxygen saturation iEj.@Horizontal, 1-minute average of data in the horizontal body position;0-1, 1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8, 8-9 and 9-10, 1-minute averages of the 0-1 minute, 1-2 minute, 2-3 minute, 3-4 minute, 4-5 minute, 5-6 minute, 6-7 minute, 7-8 minute, 8-9 minute and 9-10 minute data segments during -30‹ HDT.@White iHorizontal dataj and grey i-30‹ HDT dataj bars with error bars represent the average values and SDs of the 10 participants.@*P < 0.05 ivs. Horizontalj.@P-value of post hoc test by Student-Newman-Keuls methodj.


Table 2. 1-minute of averages of hemodynamics and respiratory condition in the horizontal position and during 10-minute of -30‹ head-down tilt
Horizontal -30‹HDT P-value
0-1 minute 1-2 minute 2-3 minute 3-4 minute 4-5 minute 5-6 minute 6-7 minute 7-8 minute 8-9 minute 9-10 minute
MCAv icm/sj iN=9j 68}9 67}12 64}10 65}10 65}10 65}10 66}11 67}10 67}11 66}12 65}12 0.093iAj
rSO2 i%j iN=8j 68}5 71}4* 71}4* 71}5* 70}5* 70}6* 70}6* 70}5* 71}4* 71}4* 70}4* 0.012iFj
HR i/minj iN=9j 64}8 64}9 63}9 62}9 62}9 62}10 62}10 63}9 64}9 62}9 62}9 0.115iAj
MAPHeartimmHgj iN=7j 80}11 78}12 79}12 79}10 79}10 79}10 80}9 80}10 80}10 79}11 79}10 0.300iFj
MAPBrainimmHgj iN=7j 81}11 88}13* 90}12* 90}11* 90}10* 90}10* 90}9** 92}10* 91}10* 89}11* 90}10* < 0.001iFj
EtCO2 iTorrj iN=9j 37}3 37}2 37}2 37}2 37}2 37}2 37}2 38}2 38}2 38}3 37}3 0.048iAj
SpO2 i%j iN=9j 97}1 98}1 98}1 98}1 98}1 97}1 97}1 97}1 97}1 97}1 97}1 < 0.001iFj
Values are mean}SD. MCAv, mean cerebral blood velocity in the middle cerebral artery; rSO2, regional cerebral oxygen saturation; HR, heart rate; EtCO2, end-tidal carbon dioxide pressure; SpO2, arterial oxygen saturation; MAPHeart, mean arterial pressure in the heart level; MAPBrain, mean arterial pressure in the brain level. N-value are expressed as one-way repeated-measures analysis of variance with data segment as a factor (A) or Friedman tests with data segment as a factor (F). *P < 0.05 (vs. Horizontal).

IV.lŽ@
@–{Œ¤‹†‚Å‚ÍCŠoÁ‰º‚ÌŒ’N‚ÈŒ¤‹†‘Îێ҂ɑ΂µ‚ÄC…•½ˆÊ‚©‚ç-30‹“ª’áˆÊ‚֑̈ʕϊ·‚³‚¹C‘̈ʕϊ·’¼Œã‚Ì”]ŒŒ—¬‘¬“x‚ƋNJ”]“àŽ_‘f–O˜a“x‚̕ω»‚ɂ‚¢‚Ä•]‰¿‚µ‚½B–{Œ¤‹†Œ‹‰Ê‚É‚¨‚¢‚ÄC‰¼à‚É”½‚µ‚ÄC‘̈ʕϊ·’¼Œã1•ªŠÔ‚É‚¨‚¢‚ÄC•½‹Ï”]ŒŒ—¬‘¬“x‚Ì5•b–ˆ‚Ì‹æŠÔ•½‹Ï’l‚Í—LˆÓ‚ȕω»‚ð”F‚߂Ȃ©‚Á‚½B‰Á‚¦‚ÄC ‘̈ʕϊ·Œã10•ªŠÔ‚É‚¨‚¢‚ÄC•½‹Ï”]ŒŒ—¬‘¬“x‚Ì1•ª–ˆ‚Ì‹æŠÔ•½‹Ï’l‚à—LˆÓ‚ȕω»‚ð”F‚߂Ȃ©‚Á‚½Bˆê•û‚ÅC‹ÇŠ”]“àŽ_‘f–O˜a“x‚Ì5•b–ˆ‚Ì‹æŠÔ•½‹Ï’l‚ÍC10-15•b‹æŠÔˆÈ~‚ÅC…•½ˆÊ‚Æ”äŠr‚µC—LˆÓ‚É‘‰Á‚µ‚½B‚³‚ç‚ÉC‘̈ʕϊ·Œã10•ªŠÔ‚É‚¨‚¢‚ÄC‹ÇŠ”]“àŽ_‘f–O˜a“x‚Ì1•ª–ˆ‚Ì‹æŠÔ•½‹Ï’l‚ÍC…•½ˆÊ‚Æ”äŠr‚µC0-1•ª‹æŠÔ‚Å—LˆÓ‚É‘‰Á‚µC‚»‚êˆÈ~‚ÅC‘‰Á‚µ‚½ó‘Ô‚ªŽ‘±‚µ‚½B‚±‚̂悤‚ÉC…•½ˆÊ‚©‚ç-30‹“ª’áˆÊ‚ւ̑̈ʕϊ·’¼Œã‚É‚¨‚¢‚Ä‚à•½‹Ï”]ŒŒ—¬‘¬“x‚͕ω»‚µ‚È‚¢‚ªC‹ÇŠ”]“àŽ_‘f–O˜a“x‚͑̈ʕϊ·‚©‚ç10•bŒãˆÈ~‚ÅC‘‰Á‚µ‚½ó‘Ô‚ªŽ‘±‚·‚邱‚Æ‚©‚çC”]ŒŒ—¬‘¬“x‚Æ”]“àŽ_‘f–O˜a“xŽw•W‚͈قȂÁ‚½•ω»‚ðŽ¦‚·‚±‚Æ‚ªŽ¦´‚³‚ꂽB
@–{Œ¤‹†‚Å‚ÍC…•½ˆÊ‚©‚ç-30‹“ª’áˆÊ‚ւ̑̈ʕϊ·’¼Œã‚É‚¨‚¢‚ÄC”]ƒŒƒxƒ‹‚Ì“®–¬ŒŒˆ³‚ªã¸‚·‚é‚É‚à‚©‚©‚í‚炸C”]ŒŒ—¬‘¬“x‚ª•ω»‚µ‚È‚©‚Á‚½B”]ƒŒƒxƒ‹‚Ì“®–¬ŒŒˆ³‚Ì㸂ɑ΂µ‚ÄC”]ŒŒ—¬Ž©“®’²ß”\‚É‚æ‚é”]ŒŒŠÇŽûkì—p‚ªv‘¬‚É“­‚«C‘̈ʕϊ·’¼Œã‚É‚¨‚¢‚Ä‚à”]ŒŒ—¬‚ªˆê’è‚ɕۂ½‚ꂽ‚Æl‚¦‚ç‚ê‚éB‰Á‚¦‚ÄC-30‹“ª’áˆÊ‚É”º‚¤“ªŠW“àˆ³‚Ì㸂ª”]ƒŒƒxƒ‹‚Ì“®–¬ŒŒˆ³‚Ì㸂ɑ΂µ‚Ä—}§“I‚É“­‚«C”]ŒŒ—¬‚ªˆê’è‚ɕۂ½‚ꂽ‰Â”\«‚àl‚¦‚ç‚ê‚éB‚½‚¾‚µC–{Œ¤‹†‚Å‚ÍCŒ’íŽÒ‚ð‘ÎÛ‚É‚µ‚Ä‚¢‚邽‚ßC“ªŠW“àˆ³‚ð’¼Ú‘ª’肵‚Ä‚¢‚È‚¢Bˆê•û‚ÅCBosone‚ç‚Ì•ñ‚Å‚ÍC-30‹“ª’áˆÊŠJŽn30•bŒã‚©‚ç100•bŠÔ‚Ì”]ŒŒ—¬‘¬“x‚Ì‹æŠÔ•½‹Ï’l‚ÍC…•½ˆÊ‚Æ”äŠr‚µ—LˆÓ‚É‚’l‚ðŽ¦‚µ‚Ä‚¨‚èC•½‹Ï”]ŒŒ—¬‘¬“x‚ª•ω»‚µ‚È‚©‚Á‚½–{Œ¤‹†Œ‹‰Ê‚ƈê’v‚µ‚È‚¢9jB‚±‚Ì—vˆö‚̈ê‚‚Ƃµ‚ÄC…•½ˆÊ‚©‚ç-30‹“ª’áˆÊ‚֑̈ʕϊ·‚·‚鑬“x‚̈Ⴂ‚ªl‚¦‚ç‚ê‚éB–{Œ¤‹†‚Å‚ÍC…•½ˆÊ‚©‚ç-30‹“ª’áˆÊ‚ÖƒeƒBƒ‹ƒgƒxƒbƒh‚ðŒX‚¯‚éÛ‚É—v‚µ‚½ŽžŠÔ‚Í25•b‚¾‚Á‚½‚̂ɑ΂µCBosone‚ç‚Ì•ñ‚Å‚Í3-5•b‚Æ’ZŽžŠÔ‚¾‚Á‚½B…•½ˆÊ‚©‚ç-30‹“ª’áˆÊ‚ւ̑̈ʕϊ·‚̈Ús‘¬“x‚ª‘¬‚¢‚ÆCÃ…—ÍŠw“Iì—p‚É‚æ‚é”]ŒŒŠÇƒŒƒxƒ‹‚Ì“®–¬ˆ³‚Ì㸑¬“x‚à‘¬‚¢‚½‚ßC”]ŒŒ—¬Ž©“®’²ß”\‚É‚æ‚錌ŠÇŽûkì—p‚ªŠÔ‚ɇ‚킸Cˆê‰ß«‚É”]ŒŒ—¬‚ª‘‰Á‚·‚é‰Â”\«‚ªl‚¦‚ç‚ê‚éB
@“ª’áˆÊ‚É‚æ‚éS””•ω»‚ÉŠÖ‚µ‚Ä‚ÍCÀˆÊ‚Æ”äŠr‚µ’ቺ‚·‚邯‚¢‚¤•ñ‚ª‚ ‚é12j,13jB‚±‚ÌS””’ቺ‚É‚ÍC“ª’áˆÊ‚É‚æ‚éÖ¬ŠÒ—¬—ʂ̑‰Á‚ðã‘åÖ¬‚âS–[‚É‚ ‚éL“WŽó—eŠí‚ªŒŸ’m‚µ’ሳŽó—eŠí”½ŽË‚É‚æ‚èŒðŠ´_ŒoŠˆ“®‚ª’ቺ‚·‚邱‚Æ‚âC㔼g‚Ì“®–¬ˆ³ã¸‚ðèò“®–¬‚â‘å“®–¬‹|‚É‚ ‚é“®–¬ˆ³Žó—eŠí‚ªŒŸ’m‚µ“®–¬ˆ³Žó—eŠí”½ŽË‚É‚æ‚è•›ŒðŠ´_Œo‚ª—DˆÊ‚ɂȂ邱‚Æ‚ªŠÖŒW‚µ‚Ä‚¢‚邯l‚¦‚ç‚ê‚éBˆê•ûC–{Œ¤‹†‚âŠô‚‚©‚Ì“ª’áˆÊ‚ÌæsŒ¤‹†5j,7j,8j‚łͅ•½ˆÊ‚Æ”ä‚×S””‚ÍŒ°’˜‚ɕω»‚µ‚Ä‚¢‚È‚¢B‚±‚ê‚ç‚̈Ⴂ‚É‚ÍCBainbridge”½ŽË14j‚̉e‹¿‚Ì’ö“x‚ªŠÖ—^‚µ‚Ä‚¢‚é‰Â”\«‚ª‚ ‚éB—Ⴆ‚ÎA—A‰t•‰‰×‚É‚æ‚èÖ¬ŠÒ—¬—Ê‚ª‘‰Á‚·‚邯S””‚ª‘‰Á‚·‚邯‚¢‚¤•ñ‚ª‚ ‚邪15j,16j,17jC‚±‚ê‚ç‚ÌŽÀŒ±‚É‚¨‚¢‚Ä‚ÍÖ¬ŠÒ—¬—Ê‘‰Á‚É‚æ‚éBainbridge”½ŽË‚ð‰î‚µ‚½•›ŒðŠ´_ŒoŠˆ“®‚̒ቺ‚ÆŒðŠ´_ŒoŠˆ“®‚̘´i‚ªŽå‚ɉe‹¿‚µ‚½‰Â”\«‚ªl‚¦‚ç‚ê‚é17jB‚‚܂èC–{Œ¤‹†‚âŠô‚‚©‚Ì“ª’áˆÊ‚ÌæsŒ¤‹†5j,7j,8j ‚Å‚ÍC‚±‚ê‚ç•¡”‚ÌŽ©—¥_Œo”½ŽË‚É‚æ‚èS””‚ւ̉e‹¿‚ª‘ŠŽE‚³‚ê17jC‚»‚ÌŒ‹‰ÊC…•½ˆÊ‚É”ä‚ׂÄS””‚ª•ω»‚µ‚È‚©‚Á‚½‰Â”\«‚ªl‚¦‚ç‚ê‚éB‚³‚ç‚ÉC–{Œ¤‹†‚Å‚ÍC‚±‚̂悤‚ÉŽ©—¥_ŒoŠˆ“®‚ª‘å‚«‚­•Ï‚í‚Á‚Ä‚¢‚È‚¢‚±‚Æ‚©‚玩—¥_Œo‚ð‰î‚µ‚½”]ŒŒ—¬Ž©“®’²ß”\‚ªˆÛŽ‚³‚êC”]ŒŒ—¬‘¬“x‚ª•ω»‚µ‚È‚©‚Á‚½‰Â”\«‚àl‚¦‚ç‚ê‚éB
@–{Œ¤‹†Œ‹‰Ê‚æ‚èC…•½ˆÊ‚©‚ç-30‹“ª’áˆÊ‚ւ̑̈ʕϊ·’¼Œã‚É‚¨‚¢‚ÄC”]ŒŒ—¬‘¬“x‚͕ω»‚µ‚È‚¢‚ªC‹ÇŠ”]“àŽ_‘f–O˜a“x‚Í‘‰Á‚·‚邱‚Æ‚©‚çC”]ŒŒ—¬‘¬“x‚ƋNJ”]“àŽ_‘f–O˜a“x‚ªˆÙ‚È‚Á‚½•ω»‚ðŽ¦‚·‚±‚Æ‚ªŽ¦´‚³‚ꂽB‚±‚Ì”]ŒŒ—¬‘¬“x‚ƋNJ”]“àŽ_‘f–O˜a“x‚̕ω»‚̈Ⴂ‚ÍCŽå‚ÉŒo“ªŠWƒhƒvƒ‰ŒŒ—¬Œv‚Æ‹ßÔŠO•ªŒõŒv‚Ì‘ª’è‘Îۂ̈Ⴂ‚É‚æ‚邯l‚¦‚ç‚ê‚éBŒo“ªŠWƒhƒvƒ‰ŒŒ—¬Œv‚ÍCƒpƒ‹ƒXƒhƒvƒ‰–@‚É‚æ‚Á‚Ä’†‘å”]“®–¬‚Ì”]ŒŒ—¬‘¬“x‚ðŒv‘ª‚·‚邽‚ßC“ªŠW“à‚Ì“®–¬ŒŒ¬•ª‚݂̂ª‘ª’è‘ÎÛ‚Å‚ ‚éBˆê•ûC‹ßÔŠO•ªŒõŒv‚ÍCד®–¬E–Ñ׌ŒŠÇE×Ö¬‚ðŠÜ‚Þ”]‘gD“à‚ÌŽ_‰»ƒwƒ‚ƒOƒƒrƒ“‚Æ’EŽ_‘f‰»ƒwƒ‚ƒOƒƒrƒ“‚©‚ç‹ÇŠ”]“àŽ_‘f–O˜a“x‚ðŽZo‚·‚邽‚ßC“ªŠW“à‚Ì“®–¬ŒŒ¬•ª‚¾‚¯‚łȂ­CÖ¬ŒŒ¬•ª‚ð‚à‘ª’è‘ÎÛ‚ÉŠÜ‚Þ18jBæsŒ¤‹†‚ÅC–{Œ¤‹†‚ÅŽg—p‚µ‚½INVOS‚Å‘ª’肳‚ê‚é‹ÇŠ”]“àŽ_‘f–O˜a“x‚ÍC“àèòÖ¬‹…•”‚ÌÖ¬ŒŒŽ_‘f–O˜a“x‚Æ‹­‚¢‘ŠŠÖ‚ªŽ¦‚³‚ê‚Ä‚¢‚邱‚Æ‚©‚çC‹ÇŠ”]“àŽ_‘f–O˜a“x‚ÍÖ¬ŒŒ‚̉e‹¿‚ð‹­‚­Žó‚¯‚邯l‚¦‚ç‚ê‚é19jB‚±‚̂悤‚ÉC‘ª’è‘ÎÛ‚ª“®–¬ŒŒ‚݂̂̌o“ªŠWƒhƒvƒ‰ŒŒ—¬Œv‚ƈقȂèC‹ßÔŠOü•ªŒõŒv‚Í‘ª’è‘ÎÛ‚ÉÖ¬ŒŒ‚ðŠÜ‚Þ‚½‚ßC“ª’áˆÊ‚ȂǓªŠW“à‚ÅÖ¬ŒŒ‚¤‚Á‘Ø‚ª¶‚¶‚é󋵂łÍC—¼ŽÒ‚̕ω»‚ɈႢ‚ª¶‚¶‚邯l‚¦‚ç‚ê‚éB
@‘¼‚É‚àC‹ßÔŠO•ªŒõŒv‚É‚æ‚é‹ÇŠ”]“àŽ_‘f–O˜a“x‚Ì‘ª’è‚݂̂ɉe‹¿‚ð‹y‚Ú‚·ˆöŽq‚ª‚¢‚­‚‚©l‚¦‚ç‚ê‚éB‚Ü‚¸C“ªŠWŠOŒŒ—¬‚̉e‹¿‚ªl‚¦‚ç‚ê‚é20j,21jB‹ßÔŠO•ªŒõŒv‚ðŽg—p‚·‚éÛ‚ÉC“ª•”ŽüˆÍ‚É‘•’…‚µ‚½ƒ^ƒjƒPƒbƒg‚Å“ª”猌—¬‚ðŽÕ’f‚·‚邯C‹ÇŠ”]“àŽ_‘f–O˜a“x‚ª—LˆÓ‚ɒቺ‚·‚邱‚Æ‚ª•ñ‚³‚ê‚Ä‚¢‚é20j,21jB‚Ü‚½CŒXŽÎŠp“x-20‹‚Ì“ª’áˆÊ‚܂łÍCŒXŽÎŠp“x‚ª‘å‚«‚­‚È‚é‚É]‚¢CŠOèò“®–¬‚ÌŒŒ—¬—Ê‚ª‘‰Á‚·‚邱‚Æ‚ª•ñ‚³‚ê‚Ä‚¢‚é22jB]‚Á‚ÄC“ª’áˆÊ‚ւ̑̈ʕϊ·‚É‚æ‚Á‚Ä‘‰Á‚µ‚½“ªŠWŠOŒŒ—¬‚ª‹ÇŠ”]“àŽ_‘f–O˜a“x‚Ì‘ª’è‚ɉe‹¿‚ð‹y‚Ú‚µ‚½‰Â”\«‚ªl‚¦‚ç‚ê‚éB‘¼‚É‚àC•s‰õŠ´‚â•sˆÀŠ´‚É‚æ‚é‘O“ª•”‚Ì_ŒoŠˆ“®˜´i‚É‚æ‚Á‚ÄC‘O“ª•”‹ÇŠ‚Å‹ÇŠ”]“àŽ_‘f–O˜a“x‚ª‘‰Á‚µ‚½‰Â”\«‚ªl‚¦‚ç‚ê‚é23j,24jB‚±‚̂悤‚ÉC‹ßÔŠO•ªŒõŒv‚É‚æ‚é‹ÇŠ”]“àŽ_‘f–O˜a“x‚Ì‘ª’è‚É‚ÍC“ªŠW“à‚ÌÖ¬ŒŒ‚⓪ŠWŠOŒŒ—¬C‘O“ª•”‚Ì_ŒoŠˆ“®˜´i‚̈öŽq‚ª‰e‹¿‚µC‚»‚ÌŒ‹‰ÊCŒo“ªŠWƒhƒvƒ‰ŒŒ—¬Œv‚Å‘ª’肳‚ê‚é”]ŒŒ—¬‘¬“x‚ƈقȂÁ‚½•ω»‚ðŽ¦‚µ‚½‚Æl‚¦‚ç‚ê‚éB
@ˆê•û‚ÅCŒo“ªŠWƒhƒvƒ‰ŒŒ—¬Œv‚ÌŒÀŠE‚Æ‚µ‚ÄC“®–¬ŒŒ‚Ì”]ŒŒ—¬‘‰Á‚ðŒŸo‚Å‚«‚È‚©‚Á‚½‰Â”\«‚àl‚¦‚ç‚ê‚éB”]ŒŒ—¬‚Ì•]‰¿‚ÉŒo“ªŠWƒhƒvƒ‰ŒŒ—¬Œv‚Å“¾‚ç‚ê‚é”]ŒŒ—¬‘¬“x‚ð—p‚¢‚éê‡C’†‘å”]“®–¬‚ÌŒŒŠÇŒa‚ª”äŠr“Iˆê’è‚Å‚ ‚邱‚Æ‚ª‘O’ñ‚ƂȂéBŒo“ªŠWƒhƒvƒ‰ŒŒ—¬Œv‚Å“¾‚ç‚ê‚é”]ŒŒ—¬‘¬“x•ω»‚Æ133XeƒNƒŠƒAƒ‰ƒ“ƒX–@25jCSingle Photon Emission Computed TomographyiSPECTj26j‚âC“dŽ¥ŒŒ—¬Œv27j‚Å‹‚ß‚ç‚ꂽ”]ŒŒ—¬•ω»‚Æ—Ç‚¢‘ŠŠÖ‚ª‚ ‚邱‚Æ‚ªæsŒ¤‹†‚ÅŽ¦‚³‚ê‚Ä‚¢‚éB‚µ‚©‚µC…•½ˆÊ‚©‚ç-30‹“ª’áˆÊ‚ւ̑̈ʕϊ·‚É‚æ‚Á‚ÄC“®–¬ŒŒ¬•ª‚ÌŒŒ—¬—Ê‚ª‘‰Á‚µ‚Ä‚¢‚é‚É‚à‚©‚©‚í‚炸C’†‘å”]“®–¬‚ÌŒŒŠÇŒa‚ªŠg’£‚·‚邱‚Ƃɂæ‚Á‚ÄC”]ŒŒ—¬‘¬“x‚ª‘‰Á‚µ‚È‚©‚Á‚½‰Â”\«‚͔ےè‚Å‚«‚È‚¢B
@ŒÄ‹CI––“ñŽ_‰»’Y‘f•ªˆ³‚¨‚æ‚ÑŒo”ç“I“®–¬ŒŒŽ_‘f–O˜a“x‚É‚¨‚¢‚ÄCANOVA‚¨‚æ‚ÑFriedman ŒŸ’è‚É‚¨‚¢‚ÄC—LˆÓ·‚ð”F‚ß‚½‚ªCŽ–ŒãŒŸ’è‚Å—LˆÓ·‚ð”F‚߂Ȃ©‚Á‚½B‚±‚Ì“ŒvŒ‹‰Ê‚©‚çCŒÄ‹CI––“ñŽ_‰»’Y‘f•ªˆ³‚¨‚æ‚ÑŒo”ç“I“®–¬ŒŒŽ_‘f–O˜a“x‚É‚¨‚¢‚ÄC‘Sƒf[ƒ^‹æŠÔ‚Ì’†‚Å‚¢‚¸‚ê‚©‚Ì‹æŠÔ‚ňႢ‚ð”F‚ß‚é‚à‚Ì‚ÌCŽ–ŒãŒŸ’è‚É‚æ‚éŒÂX‚̃f[ƒ^‹æŠÔ‚ł̔äŠr‚Å‘¨‚¦‚ç‚ê‚邿‚¤‚ÈŒ°’˜‚È·‚Í”F‚߂Ȃ©‚Á‚½‚ƉðŽß‚Å‚«‚éB‚½‚¾‚µCŽ–ŒãŒŸ’è‚É‚¨‚¢‚Ä—LˆÓ·‚ð”F‚߂Ȃ©‚Á‚½“_‚ɂ‚¢‚Ä‚ÍCƒTƒ“ƒvƒ‹”‚ª­‚È‚©‚Á‚½‚±‚Ƃɂæ‚鑿“ñŽí‚̉ߌë‚̉”\«‚àl‚¦‚ç‚ê‚éB
@Œo“ªŠWƒhƒvƒ‰ŒŒ—¬Œv‚ÌŽg—p‚ÌÛC”]ŒŒ—¬‘¬“x”gŒ`‚Ì•`o¢“ï—Ⴊ‚ ‚éˆê’蔑¶Ý‚·‚éC’´‰¹”gƒvƒ[ƒu‚𑤓ª•”‚ɌŒ肷‚éÛ‚É“Á•Ê‚ÈH•v‚ª•K—v‚Å‚ ‚éC¸“x‚ÍŒŸŽÒ‚Ì‹Zp‚ɑ傫‚­ˆË‘¶‚·‚éC‚Ȃǂ̧–ñ‚©‚çC‚»‚ÌŽg—pê–ʂ͌À‚ç‚ê‚éB‚»‚Ì‚½‚ßCŽüpŠú‚Ì”]zŠÂƒ‚ƒjƒ^ƒŠƒ“ƒO‚Å‚ÍCŽg—p•û–@‚ª‚æ‚èŠÈ•Ö‚È‹ßÔŠO•ªŒõŒv‚ª•p—p‚³‚ê‚éB‚µ‚©‚µC—§ˆÊ•‰‰×28j‚≓SlHd—Í‘•’u‚É‚æ‚é‰ßd—Í•‰‰×29j‚Å‚ÍC”]ŒŒ—¬‘¬“x‚Æ”]“àŽ_‘f–O˜a“xŽw•W‚̕ω»‚ªˆÙ‚Ȃ邱‚Æ‚ª•ñ‚³‚ê‚Ä‚¢‚éB‚³‚ç‚ÉC–{Œ¤‹†‚É‚¨‚¢‚Ä‚àC…•½ˆÊ‚©‚ç-30‹‚Ì“ª’áˆÊ‚ւ̑̈ʕϊ·‚µ‚½Û‚ÉC‘̈ʕϊ·’¼Œã‚É‚¨‚¢‚Ä”]ŒŒ—¬‘¬“x‚Æ”]“àŽ_‘f–O˜a“xŽw•W‚ªˆÙ‚È‚Á‚½•ω»‚ðŽ¦‚·‚±‚Æ‚ªŽ¦´‚³‚ꂽB“ªŠW“à‚ÌÖ¬ŒŒ‚⓪ŠWŠOŒŒ—¬C‘O“ª•”‚Ì_ŒoŠˆ“®‚ª•ω»‚·‚éðŒ‰º‚Å‚ÍC”]ŒŒ—¬‘¬“x‚Æ”]“àŽ_‘f–O˜a“xŽw•W‚̕ω»‚ªˆÙ‚È‚é‰Â”\«‚ª‚ ‚邱‚Æ‚ð”Fޝ‚·‚é•K—v‚ª‚ ‚éB

V.Œ‹˜_
@‰¼à‚É”½‚µC…•½ˆÊ‚©‚ç-30‹“ª’áˆÊ‚ւ̑̈ʕϊ·‚ÌÛC”]ŒŒ—¬‘¬“x‚͕ω»‚µ‚È‚©‚Á‚½Bˆê•û‚ÅC‹ÇŠ”]“àŽ_‘f–O˜a“x‚Í…•½ˆÊ‚©‚ç-30‹“ª’áˆÊ‚ւ̑̈ʕϊ·Œã10•bˆÈ~‚ÅC‘‰Á‚µ‚½ó‘Ô‚ªŽ‘±‚µ‚½B–{Œ¤‹†Œ‹‰Ê‚É‚æ‚èC…•½ˆÊ‚©‚ç-30‹“ª’áˆÊ‚ւ̑̈ʕϊ·’¼Œã‚É‚¨‚¢‚ÄC”]ŒŒ—¬‘¬“x‚Æ”]“àŽ_‘f–O˜a“xŽw•W‚͈قȂÁ‚½•ω»‚ðŽ¦‚·‚±‚Æ‚ªŽ¦´‚³‚ꂽB”]ŒŒ—¬‘¬“x‚Æ”]“àŽ_‘f–O˜a“xŽw•W‚Í”]zŠÂƒ‚ƒjƒ^ƒŠƒ“ƒO‚É‚¨‚¢‚Ăǂ¿‚ç‚à—L—p‚ÈŽw•W‚¾‚ªC…•½ˆÊ‚©‚ç-30‹“ª’áˆÊ‚ւ̑̈ʕϊ·‚É”º‚¤‘̉t“ª‘¤ƒVƒtƒg‚Å‚ÍC—¼ŽÒ‚ªˆÙ‚È‚é•ω»‚ðŽ¦‚·‚±‚Æ‚ð”Fޝ‚·‚é•K—v‚ª‚ ‚éB

VI.—˜‰v‘Š”½
@–{e‚ÉŠÖ‚µ‚ÄŠJަ‚·‚ׂ«COIiConflicts of interestj‚͂Ȃ¢B

VII.ŽÓŽ«
@–{Œ¤‹†‚ÍC—ߘa2”N“x“ú–{‘åŠwˆãŠw•”‘n—§50Žü”N‹L”OŒ¤‹†•¬‹ài‹¤“¯Œ¤‹†j‚Ì•¬‚É‚æ‚è‚È‚³‚ꂽ‚à‚̂ł ‚èC‚±‚±‚É[r‚È‚éŽÓˆÓ‚ð•\‚µ‚Ü‚·B

•¶Œ£

1j Mader T.H., Gibson C.R., Pass A.F., et al.:Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight.@Ophthalmology., 118, 2058-2069, 2011. doi:10.1016/j.ophtha.2011.06.021.
2j Maerz D.A., Beck L.N., Sim A.J., et al.:Complications of robotic-assisted laparoscopic surgery distant from the surgical site.@Br J Anaesth., 118, 492-503, 2017. doi:10.1093/bja/aex003.
3j Pandey R., Garg R., Darlong V., et al.:Hemiparesis after robotic laparoscopic radical cystectomy and ileal conduit formation in steep Trendelenburg position.@J Robot Surg., 6, 269-271, 2012. doi:10.1007/s11701-011-0302-7.
4j ¼ˆä‹­C²“¡Ž•FCŽ“c~ˆêC‘¼D‘O—§‘BŠà‚ÌÅVŽèpD“ú‘åˆãŽC75, 201-203, 2016. doi:https://doi.org/10.4264/numa.75.4_201.
5j Cooke W.H., Pellegrini G.L., Kovalenko O.A.:Dynamic cerebral autoregulation is preserved during acute head-down tilt.@J Appl Physiol i1985j. 2003;95i4j:1439-1445. doi:10.1152/japplphysiol.00524.2003.
6j Ishida S., Miyati T., Ohno N., et al.:MRI-based assessment of acute effect of head-down tilt position on intracranial hemodynamics and hydrodynamics.@J Magn Reson Imaging. 2018;47i2j:565-571. doi:10.1002/jmri.25781
7j Kato T., Kurazumi T., Konishi T., Takko C., Ogawa Y., Iwasaki K.I.:Effects of -10‹ and -30‹ head-down tilt on cerebral blood velocity, dynamic cerebral autoregulation, and noninvasively estimated intracranial pressure.@J Appl Physiol i1985j. 2022;132i4j:938-946. doi:10.1152/japplphysiol.00283.2021
8j Kurazumi T., Ogawa Y., Yanagida R., Morisaki H., Iwasaki KI.:Dynamic Cerebral Autoregulation During the Combination of Mild Hypercapnia and Cephalad Fluid Shift.@Aerosp Med Hum Perform. 2017;88i9j:819-826. doi:10.3357/AMHP.4870.2017
9j Bosone D., Ozturk V., Roatta S., et al.:Cerebral haemodynamic response to acute intracranial hypertension induced by head-down tilt.@Funct Neurol., 19, 31-35, 2004.
10j Jin D., Yu H., Li H., et al.:Hemodynamic changes of anesthesia, pneumoperitoneum, and head-down tilt during laparoscopic surgery in elderly patients.@Ann Transl Med., 9, 1177, 2021. doi:10.21037/atm-21-3407.
11j Park E.Y., Koo B.N., Min K.T., et al.:The effect of pneumoperitoneum in the steep Trendelenburg position on cerebral oxygenation.@Acta Anaesthesiol Scand., 53, 895-899, 2009. doi:10.1111/j.1399-6576.2009.01991.x.
12j Shiraishi M., Schou M., Gybel M., Christensen N.J., Norsk P.:Comparison of acute cardiovascular responses to water immersion and head-down tilt in humans.@J Appl Physiol i1985j. 2002;92i1j:264-268. doi:10.1152/jappl.2002.92.1.264
13j Whittle R.S., Keller N., Hall E.A., et al.:Gravitational Dose-Response Curves for Acute Cardiovascular Hemodynamics and Autonomic Responses in a Tilt Paradigm.@J Am Heart Assoc. 2022;11i14j:e024175. doi:10.1161/JAHA.121.024175
14j Bainbridge F.A.:The influence of venous filling upon the rate of the heart.@J Physiol. 1915;50i2j:65-84. doi:10.1113/jphysiol.1915.sp001736
15j Ogoh S., Brothers R.M., Barnes Q., et al.:Effects of changes in central blood volume on carotid-vasomotor baroreflex sensitivity at rest and during exercise.@J Appl Physiol i1985j. 2006;101i1j:68-75. doi:10.1152/japplphysiol.01452.2005
16j Watenpaugh D.E., Yancy C.W., Buckey J.C., Lane L.D., Hargens A.R., Blomqvist C.G.:Role of atrial natriuretic peptide in systemic responses to acute isotonic volume expansion.@J Appl Physiol i1985j. 1992;73i4j:1218-1226.@Doi:10.1152/jappl.1992.73.4.1218
17j Barbieri R., Triedman J.K., Saul J.P.:Heart rate control and mechanical cardiopulmonary coupling to assess central volume:a systems analysis.@Am J Physiol Regul Integr Comp Physiol. 2002;283i5j:R1210-R1220.@doi:10.1152/ajpregu.00127.2002
18j Boushel R., Langberg H., Olesen J., et al.:Monitoring tissue oxygen availability with near infrared spectroscopy iNIRSj in health and disease.@Scand J Med Sci Sports., 11, 213-222, 2001.@doi:10.1034/j.1600-0838.2001.110404.x.
19j Kim M.B., Ward D.S., Cartwright C.R., et al.:Estimation of jugular venous O2 saturation from cerebral oximetry or arterial O2 saturation during isocapnic hypoxia.@J Clin Monit Comput., 16, 191-199, 2000.@doi:10.1023/a:1009940031063. PMID:12578103.
20j Davie S.N., Grocott H.P.:Impact of extracranial contamination on regional cerebral oxygen saturation:a comparison of three cerebral oximetry technologies.@Anesthesiology., 116, 834-840, 2012.@doi:10.1097/ALN.0b013e31824c00d7.
21j Kato S., Yoshitani K., Kubota Y., et al.:Effect of posture and extracranial contamination on results of cerebral oximetry by near-infrared spectroscopy.@J Anesth., 31, 103-110, 2017.@doi:10.1007/s00540-016-2275-1.
22j Ogoh S., Washio T., Paton J.F.R., et al.:Gravitational effects on intracranial pressure and blood flow regulation in young men:a potential shunting role for the external carotid artery.@J Appl Physiol i1985j., 129, 901-908, 2020.@doi:10.1152/japplphysiol.00369.2020.
23j Pardo J.V., Pardo P.J., Raichle M.E.:Neural correlates of self-induced dysphoria.@Am J Psychiatry., 150, 713-719, 1993.@doi:10.1176/ajp.150.5.713.
24j Hoshi Y., Huang J., Kohri S., et al.:Recognition of human emotions from cerebral blood flow changes in the frontal region:a study with event-related near-infrared spectroscopy.@J Neuroimaging., 21, e94-e101, 2011.@doi:10.1111/j.1552-6569.2009.00454.x.
25j Clark J.M., Skolnick B.E., Gelfand R., et al.:Relationship of 133Xe cerebral blood flow to middle cerebral arterial flow velocity in men at rest.@J Cereb Blood Flow Metab., 16-1255-1262, 1996.@doi:10.1097/00004647-199611000-00021.
26j Larsen F.S., Olsen K.S., Hansen B.A., et al.:Transcranial Doppler is valid for determination of the lower limit of cerebral blood flow autoregulation.@Stroke., 25, 1985-1988, 1994.@doi:10.1161/01.str.25.10.1985.
27j Newell D.W., Aaslid R., Lam A., et al.:Comparison of flow and velocity during dynamic autoregulation testing in humans.@Stroke., 25, 793-797, 1994.@doi:10.1161/01.str.25.4.793.
28j Canova D., Roatta S., Bosone D., et al.:Inconsistent detection of changes in cerebral blood volume by near infrared spectroscopy in standard clinical tests.@J Appl Physiol i1985j., 110, 1646-1655, 2011.@doi:10.1152/japplphysiol.00003.2011.
29j Konishi T., Kurazumi T., Kato T., Takko C., Ogawa Y., Iwasaki K.I.:Changes in cerebral oxygen saturation and cerebral blood flow velocity under mild +Gz hypergravity.@J Appl Physiol i1985j., 127, 190-197, 2019.@doi:10.1152/japplphysiol.00119.2019.

˜A—æF“ú–{‘åŠwˆãŠw•”ŽÐ‰ïˆãŠwŒn‰q¶Šw•ª–ì
@@@‹³Žö@Šâú±@Œ«ˆê
@@@TEL:03-3972-8111
@@@E-mail:iwasaki.kenichi@nihon-u.ac.jp