Tohoku J. Exp. Med., 2012 Sep, 228(1)

Coordinated Expression of 6-Phosphofructo-2-kinase/Fructose-2,6-bisphosphatase 4 and Heme Oxygenase 2: Evidence for a Regulatory Link between Glycolysis and Heme Catabolism

BIN LI,1 KAZUHISA TAKEDA,1 KAZUNOBU ISHIKAWA,2 MIKI YOSHIZAWA,1 MICHIHIKO SATO,3 SHIGEKI SHIBAHARA1 and KAZUMICHI FURUYAMA1

1Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Sendai, Japan
2Center for Medical Education and Career Development, Fukushima Medical University, Fukushima, Japan
3Central Laboratory for Research and Education, Yamagata University School of Medicine, Yamagata, Japan

Heme is an essential requirement for cell survival. Heme oxygenase (HO) is the rate-limiting enzyme in heme catabolism and consists of two isozymes, HO-1 and HO-2. To identify the protein that regulates the expression or function of HO-1 or HO-2, we searched for proteins that interact with both isozymes, using protein microarrays. We thus identified 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 (PFKFB4) that synthesizes or degrades fructose-2,6-bisphosphate, a key activator of glycolysis, depending on cellular microenvironments. Importantly, HO-2 and PFKFB4 are predominantly expressed in haploid spermatids. Here, we show a drastic reduction in expression levels of PFKFB4 mRNA and protein and HO-2 mRNA in HepG2 human hepatoma cells in responses to glucose deprivation (le; 2.5 mM), which occurred concurrently with remarkable induction of HO-1 mRNA and protein. Knockdown of HO-2 expression in HepG2 cells, using small interfering RNA, caused PFKFB4 mRNA levels to decrease with a concurrent increase in HO-1 expression. Thus, in HepG2 cells, HO-1 expression was increased, when expression levels of HO-2 and PFKFB4 mRNAs were decreased. Conversely, overexpression of HO-2 in HepG2 cells caused the level of co-expressed PFKFB4 protein to increase. These results suggest a potential regulatory role for HO-2 in ensuring PFKFB4 expression. Moreover, in D407 human retinal pigment epithelial cells, glucose deprivation decreased the expression levels of PFKFB4, HO-1, and HO-2 mRNAs. Thus, glucose deprivation consistently down-regulated the expression of PFKFB4 and HO-2 mRNAs in both HepG2 cells and RPE cells. We therefore postulate that PFKFB4 and HO-2 are expressed in a coordinated manner to maintain glucose homeostasis.

keywords —— diabetes mellitus; glucose; glycolysis; liver; retinal pigment epithelium

===============================

Tohoku J. Exp. Med., 2012, 228, 27-41

Correspondence: Kazuhisa Takeda, M.D., Ph.D., Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.

e-mail: ktakeda@med.tohoku.ac.jp