Tohoku J. Exp. Med., 2009, 219(1)

Chinese Herbal Medicine Yi-Gan-San Decreases the Lipid Accumulation in Mouse 3T3-L1 Adipocytes by Modulating the Activities of Transcription Factors SREBP-1c and FoxO1

MASAYUKI IZUMI,1,2 TAKASHI SEKI,2 KOH IWASAKI2 and KAZUICHI SAKAMOTO1

1Graduate school of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
2Center for Asian Traditional Medicine, Graduate School of Medicine, Tohoku University, Miyagi, Japan

Abnormal lipid metabolism in adipose tissue is closely related to the occurrence and progression of a wide variety of metabolic syndromes. We have analyzed the pharmacological effects of Chinese herbal medicines on cell differentiation and lipid metabolism in adipocytes. Yi-Gan-San (YGS) is a Chinese herbal medicine that is effective in treating the behavioral and psychological symptoms of dementia; however, its physiological mechanism remains unclear. We analyzed the effects of YGS on lipid accumulation in mouse 3T3-L1 adipocytes. Adipocyte differentiation was induced in mouse 3T3-L1 preadipocytes by treatment with the mixture of dexamethasone, 3-iso-butyl-1-methylxanthine, and insulin, and cells were cultured for 8 days with Chinese herbal medicines, including YGS. YGS effectively reduced the lipid accumulation in the differentiated 3T3-L1 cells in a dose-dependent manner, but had no effect on cell viability. YGS also reduced the activity of glycerol-3-phosphate dehydrogenase, an enzyme involved in lipid synthesis. In contrast, YGS gave no noticeable effect on glucose uptake and fatty acid uptake in the differentiated 3T3-L1 cells. Moreover, we established the stably transfected 3T3-L1 cell lines, each of which expresses the luciferase reporter gene under the control of sterol regulatory element-binding protein-1c (SREBP-1c) or FoxO1. SREBP-1c is a transcription factor involved in fatty acid synthesis, and FoxO1 is a forkhead-type transcription factor involved in adipocyte differentiation. Using these cell lines, we showed that YGS reduced the transcriptional activity of SREBP-1c, whereas YGS increased the activity of FoxO1. Thus, YGS may suppress lipid synthesis and fat accumulation in adipocytes through modulating the activities of SREBP-1c and FoxO1.

keywords —— Yi-Gan-San; SREBP-1c; FoxO; Adipocyte; 3T3-L1.

===============================

Tohoku J. Exp. Med., 2009, 219, 53-62

Correspondence: Kazuichi Sakamoto, Graduate school of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572 Japan.

e-mail: sakamoto@biol.tsukuba.ac.jp