‰F’ˆq‹óŠÂ‹«ˆãŠw Vol. 56, No. 2, 25-33, 2019

Œ´’˜

Œy“x‰ßd—Í•‰‰×’†‚Ì“®“I”]ŒŒ—¬Ž©“®’²ß”\‚ÌŒoŽž•Ï‰»

¬¼@@“§1,2C‘qZ@‘ñ–í1C“cŽq@’q°1C‰Á“¡@’qˆê1C¬ì—m“ñ˜Y1CŠâí•@Œ«ˆê1

1“ú–{‘åŠwˆãŠw•”ŽÐ‰ïˆãŠwŒn‰q¶Šw•ª–ì
2–h‰qÈq‹óŽ©‰q‘àq‹óˆãŠwŽÀŒ±‘à

Time-dependent changes in dynamic cerebral autoregulation under mild +Gz hypergravity

Toru Konishi1,2, Takuya Kurazumi1, Chiharu Takko1, Tomokazu Kato1, Yojiro Ogawa1, Ken-ichi Iwasaki1

1Division of Hygiene, Department of Social Medicine, Nihon University School of Medicine
2Aeromedical Laboratory, Koku-Jieitai iJapan Air Self-Defense Forcej, Ministry of Defense

ABSTRACT
@INTRODUCTION@@Intermittent exposure to mild +Gz hypergravity has been proposed for preventing and/or mitigating physiological deconditioning induced by long-duration spaceflight.@We previously reported that cerebral blood flow iCBFj significantly decreased under even mild +Gz hypergravity.@However, little has known about the time-dependent changes in dynamic cerebral autoregulation iDCAj under mild +Gz hypergravity.@Hence, we thought that evaluating the time-dependent changes in DCA during mild +Gz centrifugation would be meaningful and reanalyzed the data of our previous experiments to investigate them.
@METHODS@@Among 17 male volunteers, 15 participants completed the exposure to +1.5 Gz generated by short-arm human centrifuge for 21 min.@The data during centrifugation was divided to 4 segments every 5 min.@Four hypergravity segments and pre-hypergravity segment i+1.0 Gz, 5 minj were used for the present reanalysis.@To calculate variabilities of mean arterial blood pressure iMAPj and mean CBF velocity in the middle cerebral artery iMCBFVj, spectrum analyses were performed using arterial blood pressure waveform obtained by finger plethysmography and CBF velocity waveform obtained by transcranial Doppler sonography.@Then, DCA was evaluated by transfer function analysis from MAP variability to MCBFV variability.
@RESULTS@@Regarding the results in low-frequency range i0.07-0.20 Hzj for the completed 15 participants, MAP variability significantly increased after 5-10 min i5-10 min, +73.2%;10-15 min, +83.7%; 15-20 min, +72.2%j.@MCBFV variability significantly increased in 0-5 min i+77.5%j compared with pre-hypergravity and then tended to decrease i5-10 min, +53.9%;10-15 min, +45.6%;15-20 min, +33.5%j.@Transfer function gain significantly decreased between 0-5 min and 15-20 min i+13.3% and |3.8% compared with pre-hypergravityj.@As for the incomplete case involving pre-syncope, transfer function gain in low-frequency range continued to increase throughout centrifugation i0-5 min, +12.5%;5-10 min, +25.0%;10-15 min, +31.2%;15-20 min, +40.6%j.
@DISCUSSION@@MCBFV variability was increased at the beginning of centrifugation in completed participants, indicating that cerebral circulation was unstable.@However, MCBFV variability tended to decrease during centrifugation despite continued increases in MAP variability, which led to the decreases in transfer function gain and indicated that DCA was improved during centrifugation. On the other hand, DCA was deteriorated during centrifugation in the incomplete case due to pre-syncope, because transfer function gain continued to increase throughout centrifugation.
@CONCLUSION@@The present results suggest that DCA is improved under mild +Gz hypergravity, which plays an important role to prevent syncope.

iReceived:19 August, 2019@Accepted:28 February, 2020j

Key words:human centrifuge, artificial hypergravity, arterial blood pressure, cerebral blood flow, transfer function analysis

‚Í‚¶‚ß‚É
@’·Šú‰F’ˆ‘ØÝ‚É‚æ‚é”÷¬d—Í”˜˜I‚ÍCœ–§“x’ቺC‹ØˆÞkCSzŠÂƒfƒRƒ“ƒfƒBƒVƒ‡ƒjƒ“‚Æ‚¢‚Á‚½—lX‚ȶ—Šw“I•Ï‰»‚ð‚à‚½‚ç‚·‚±‚Æ‚ª’m‚ç‚ê‚Ä‚¢‚é13jB‚±‚Ì’·Šú‰F’ˆ‘ØÝ‚É”º‚¤¶—Šw“I•Ï‰»‚Ì—\–hEŒyŒ¸ô‚Ì1‚‚Ƃµ‚ÄCŒy“x‰ßd—Íi+GzjŠÂ‹«‚Ö‚Ì”½•œ”˜˜I‚ª’ñ¥‚³‚ê‚ÄŠù‚É30”NˆÈオŒo‚‚ª1jC–¢‚¾ŽÀ—p‰»‚É‚ÍŽŠ‚Á‚Ä‚¨‚炸C—lX‚ÈŒ¤‹†‚ªŒp‘±‚µ‚Äs‚í‚ê‚Ä‚¢‚é3jB‰äX‚Í‚±‚ê‚Ü‚Å‚ÉCŒy“x‚̉ßd—Íi+1.5 Gzj‚Å‚ ‚Á‚Ä‚à•‰‰×’¼Œã‚©‚ç”]ŒŒ—¬‚ª’ቺ‚µŽn‚ßCŽ‘±ŽžŠÔ‚ª5•ª‚ð’´‚¦‚é‚Æ—LˆÓ‚Ȓቺ‚ƂȂ邱‚Æ‚ð•ñ‚µ‚Ä‚¢‚é10,11jB‚Ü‚½C•‰‰×‘O‚Æ•‰‰×15-21•ª‚ð”äŠr‚µ‚½ŽÀŒ±‚Å‚ÍC“®“I”]ŒŒ—¬Ž©“®’²ß”\‚ª‘‹­‚µ‚Ä‚¢‚é‰Â”\«‚ªŽ¦´‚³‚ꂽ7jB‚µ‚©‚µ‚È‚ª‚çC‰äX‚ª’m‚éŒÀ‚èC‚±‚ê‚Ü‚Å‚ÉŒy“x‰ßd—Í•‰‰×’†‚Ì“®“I”]ŒŒ—¬Ž©“®’²ß”\‚ÌŒoŽž•Ï‰»‚ɂ‚¢‚ÄŒŸ“¢‚µ‚½•ñ‚Í‚È‚¢B
@“®“I”]ŒŒ—¬Ž©“®’²ß”\‚ɂ‚¢‚Ä‚ÍŠâè‚Ì•ñ5j‚ÉÚ‚µ‚¢‚ªC—v–ñ‚·‚é‚ÆCuŒŒˆ³‚ª‚ ‚éˆê’è”͈͂ɂ ‚ê‚Δ]ŒŒ—¬‚ªˆê’è‚É•Û‚½‚ê‚éBv‚Æ‚¢‚¤ŒÃ“T“I‚È”]ŒŒ—¬Ž©“®’²ß‚ÌŠT”OiÓI”]ŒŒ—¬Ž©“®’²ß”\j12j‚ɑ΂µ‚ÄC“®“I”]ŒŒ—¬Ž©“®’²ß”\‚Æ‚ÍuŒŒˆ³‚ÌŽ©”­•Ï“®iŒŒˆ³•Ï“®j‚©‚ç”]ŒŒ—¬•Ï“®‚Ö‚ÌŠÖŒW«v‚ð•]‰¿‚µ‚½‚à‚Ì‚Å‚ ‚éBŒŒˆ³‚â”]ŒŒ—¬‚Ì•Ï“®‚ÍCŽü”g”‰ðÍ‚É‚æ‚èŽü”g”–ˆ‚Ì•Ï“®—ÊiƒXƒyƒNƒgƒ‹j‚ðŽZo‚µ‚Ä•]‰¿‚·‚éB—¼ŽÒ‚Ì•Ï“®—Ê‚©‚ç“`’BŠÖ”‰ðÍ‚Æ‚µ‚ăNƒƒXƒXƒyƒNƒgƒ‹–@‚ð—p‚¢‚邱‚Æ‚ÅCŒŒˆ³•Ï“®‚©‚ç”]ŒŒ—¬•Ï“®‚Ö‚Ì“`’B‚Ì’ö“x“™‚ðŽü”g”ˆæ–ˆ‚É•]‰¿‚·‚邱‚Æ‚ª‚Å‚«‚éBŒŒˆ³•Ï“®‚©‚ç”]ŒŒ—¬•Ï“®‚Ö‚Ì“`’B‚ªg‘å‚«‚¢hó‘Ô‚ÍC“®“I”]ŒŒ—¬Ž©“®’²ß”\‚ªgŒ¸Žãh‚µ‚Ä‚¢‚邱‚Æ‚ðŽ¦‚µC‹t‚ÉCŒŒˆ³•Ï“®‚©‚ç”]ŒŒ—¬•Ï“®‚Ö‚Ì“`’B‚ªg¬‚³‚¢hó‘Ô‚ªC“®“I”]ŒŒ—¬Ž©“®’²ß”\‚ªg‘‹­h‚µ‚Ä‚¢‚邱‚Æ‚ðŽ¦‚·B
@–{Œ¤‹†‚Å‚ÍC‚±‚̂悤‚È“®“I”]ŒŒ—¬Ž©“®’²ß”\‚Ì•]‰¿–@‚É‚æ‚èC‰äX‚ª”]“àŽ_‘f–O˜a“x‚Ì•]‰¿–Ú“I‚ʼnߋŽ‚ÉŽÀŽ{‚µ‚½ŽÀŒ±ƒf[ƒ^11j‚ð—p‚¢‚ÄCŒŒˆ³‹y‚Ñ”]ŒŒ—¬‘¬“x‚Ì•Ï“®—Ê‚ðŽZo‚µC—¼ŽÒ‚Ì“`’BŠÖ”‰ðÍ‚ðŽ{‚µ‚ÄCŒy“x‰ßd—Í•‰‰×’†‚Ì“®“I”]ŒŒ—¬Ž©“®’²ß”\‚ÌŒoŽž•Ï‰»‚ɂ‚¢‚ÄŒŸ“¢‚µ‚½B

•û–@
@—Ï— @–{Œ¤‹†‚͉ߋŽ‚É”]“àŽ_‘f–O˜a“x‚Ì•]‰¿–Ú“I‚ÅŽÀŽ{‚µ‚½ŽÀŒ±‚Å“¾‚ç‚ꂽƒf[ƒ^‚̒ljÁ‰ðÍ‚É‚æ‚é‚à‚Ì‚Å‚ ‚邪CŠî‚Æ‚È‚Á‚½ŽÀŒ±‚ÍC“ú–{‘åŠwˆãŠw•”—Ï—ˆÏˆõ‰ï‚̳”Fi³”F”Ô†29-2-0@³”F“ú2017”N7ŒŽ4“új‚ðŽó‚¯C‘åŠw•a‰@ˆã—Ãî•ñƒlƒbƒgƒ[ƒNƒZƒ“ƒ^[iUMINj—Õ°ŽŽŒ±“o˜^ƒVƒXƒeƒ€‚É“o˜^iUMIN000028466j‚µ‚½ã‚ÅCuƒwƒ‹ƒVƒ“ƒL錾v‚âul‚ð‘ÎÛ‚Æ‚·‚éˆãŠwŒnŒ¤‹†‚ÉŠÖ‚·‚é—Ï—Žwjv‚Æ‚¢‚Á‚½–@‹K—Þ‚ð…Žç‚µ‚ÄŽÀŽ{‚µ‚½B‚Ü‚½C‘S”팱ŽÒ‚ɑ΂µ‚ÄCŽÀŒ±‚Ì–Ú“IE•û–@EƒŠƒXƒNi‹C•ª•s‰õ“™‚ÌoŒ»‚̉”\«‚ðŠÜ‚ÞBjEŒÂlî•ñ•ÛŒì“™‚ɂ‚¢‚Ä•¶‘‹y‚ÑŒû“ª‚Åà–¾‚ðs‚¢CŽ¿–â‚ðŽó‚¯CŽÀŒ±ŽQ‰Á‚Ö‚Ì“¯ˆÓ‚ð‘–Ê‚Å“¾‚Ä‚¢‚éB‚È‚¨C”팱ŽÒ‚©‚瓯ˆÓ‚𓾂éÛ‚ÉCŽÀŒ±‚ð’Ê‚¶‚Ď擾‚µ‚½ƒf[ƒ^‚ɂ‚¢‚ÄC«—ˆ“–‰‚Ì–Ú“I‚Ƃ͈قȂ錤‹†‚ÅŽg—p‚·‚邱‚Ƃɂ‚¢‚Ä‚à‘–Ê‚Å“¯ˆÓ‚𓾂Ă¢‚éB
@”팱ŽÒ
@–âf‹y‚Ñ‚±‚ê‚Ü‚Å‚ÌŒ’Nf’fŒ‹‰Ê‚Ì’®Žæ‚É‚æ‚èCŽ¡—Ã’†‚ÌŽ¾•a‚âzŠÂŒn‚ɉe‹¿‚ð‹y‚Ú‚·‚悤‚ÈŠù‰—ð‚ð”F‚ß‚È‚¢‚±‚Æ‚ªŠm”F‚Å‚«C‚±‚ê‚܂łɉ“SlHd—Í‘•’u‚É‚æ‚é‰ßd—Í•‰‰×‚ÌŒoŒ±‚ª–³‚¢CŒ’í¬l’j«17–¼i”N—î24 ± 1ÎCg’·172.6 ± 6.6 cmC‘Ìd69.2 ± 7.7 kgj‚ð”팱ŽÒ‚Æ‚µ‚½B‚Ü‚½CS“d}ŒŸ¸‹y‚ÑŒŒˆ³‘ª’è‚ðŽÀŽ{‚µCˆÙí‚ð”F‚ß‚È‚¢‚±‚Æ‚ðŠm”F‚µ‚½ã‚ÅCŒo“ªŠWƒhƒvƒ‰ŒŒ—¬Œv‚É‚æ‚è‰E’†‘å”]“®–¬‚Ì”]ŒŒ—¬‘¬“x‚ð•`o‚Å‚«‚邱‚Æ‚ðŠm”F‚µ‚½B‚³‚ç‚ÉCŽÀŒ±12ŽžŠÔˆÈ“à‚ÌŒƒ‚µ‚¢‰^“®‚âƒJƒtƒFƒCƒ“^ƒAƒ‹ƒR[ƒ‹ŠÜ—Lˆù—¿‚ÌÛŽæ‚ð”ð‚¯CŽÀŒ±2ŽžŠÔˆÈ“à‚Í‹ÖH‚Æ‚µ‚½B
@ŽÀŒ±Žè‡
@ŽÀŒ±Žè‡‚͉äX‚̉ߋŽ‚Ì•ñ11j‚ÉÚq‚µ‚Ä‚¢‚邽‚ßC–{•ñ‚Å‚ÍŠÈ’P‚Èà–¾‚É—¯‚ß‚éB‰ßd—Í•‰‰×‚Í“ú–{‘åŠwˆãŠw•”‚Å•Û—L‚·‚é‰ñ“]”¼Œa1.7 m‚̃qƒg—p‰“SlHd—Í‘•’ui‘æˆêˆã‰ÈŠ”Ž®‰ïŽÐC“Œ‹ž“sj‚ð—p‚¢‚Äs‚Á‚½BŽÀŒ±’†‚ÍC—lX‚ȶ‘Ìî•ñ‚ð‹L˜^‚µ‚½‚ªC–{Œ¤‹†‚Å‚ÍC”ñŠÏŒŒ“I˜A‘±ŒŒˆ³ŒviFinometer MIDI, Finapres Medical SystemsCƒIƒ‰ƒ“ƒ_j‚Å‹L˜^‚µ‚½“®–¬ˆ³”gŒ`‚ÆŒo“ªŠWƒhƒvƒ‰ŒŒ—¬ŒviEZ-Dop, Compumedics Germany GmbHCƒhƒCƒcj‚Å‹L˜^‚µ‚½’†‘å”]“®–¬‚Ì”]ŒŒ—¬‘¬“x”gŒ`‚ð—p‚¢‚ĒljÁ‰ðÍ‚ðs‚Á‚½B—¼”gŒ`‚ÍC”Ä—pƒf[ƒ^‹L˜^‰ð̓\ƒtƒgƒEƒFƒANotocord-hem 4.3.0.74iNotocordCƒtƒ‰ƒ“ƒXj‚ð—p‚¢‚ÄC1 kHz‚̃Tƒ“ƒvƒŠƒ“ƒOƒŒ[ƒg‚Å•Û‘¶‚³‚ê‚Ä‚¢‚éB
@‰‚ß‚ÉC”팱ŽÒ‚ð‰“SlHd—Í‘•’u‚̃Sƒ“ƒhƒ‰“à‚̈֎q‚ÉÀ‚点C15•ªˆÈã‚̈ÀÃŽžŠÔ‚ðŠm•Û‚µ‚½ŒãC6•ªŠÔ‚Ì•‰‰×‘Oƒf[ƒ^‘ª’è‚ðŽÀŽ{‚µ‚½B‚»‚ÌŒãC‰“SlHd—Í‘•’u‚̉^“]‚ðŠJŽn‚µC”팱ŽÒ‚ÌS‘ŸƒŒƒxƒ‹‚Å‚Ìd—Í‚ª+1.5 Gz‚É‚È‚é‚悤C–ˆ•ª24.3‰ñ“]‚ðˆÛŽ‚µC+1.5 Gz‚É“ž’BŒã21•ªŠÔ‚Ì•‰‰×’†ƒf[ƒ^‘ª’è‚ðŽÀŽ{‚µ‚½B‚È‚¨C‰ÁŒ¸‘¬—¦‚Í‚»‚ꂼ‚ê+0.5 Gz/•ª‹y‚Ñ|0.1 Gz/•ª‚Æ‚µ‚½B•‰‰×’†‚à’ʘb‘•’u‚ð‰î‚µ‚½ƒSƒ“ƒhƒ‰“à‚̔팱ŽÒ‚Ƃ̉ï˜b‚ª‰Â”\‚Å‚ ‚èCƒSƒ“ƒhƒ‰“à‚ÉÝ’u‚³‚ꂽCCDƒJƒƒ‰‚âŽÀŒ±‚ÅŽg—p‚·‚éŒv‘ª‹@Ší‚É‚æ‚èC”팱ŽÒ‚Ì—lŽq‚âƒoƒCƒ^ƒ‹ƒTƒCƒ“‚ðí‚ÉŠÄŽ‹‚µ‚Ä‚¢‚邽‚ßCŽ©Šo“I–”‚Í‘¼Šo“IˆÙí‚ð”F‚ß‚½Û‚Í‘¬‚â‚©‚É•‰‰×‚𒆎~‚·‚邱‚Æ‚ª‚Å‚«‚é‘Ô¨‚Å‚ ‚Á‚½B¡‰ñ‚ÌŽÀŒ±‚Å‚Í17–¼‚̔팱ŽÒ‚Ì‚¤‚¿C15–¼‚ªˆÙí‚È‚­21•ªŠÔ‚Ì•‰‰×‚ðŠ®‹‚µC2–¼‚ªƒoƒCƒ^ƒ‹ƒTƒCƒ“‚̈Ùí‚𔺂¤‹C•ª•s‰õ‚ð‘i‚¦‚½‚½‚ß•‰‰×‚ð“r’†‚Å’†Ž~‚µ‚½11jB
@ƒf[ƒ^‰ðÍ
@‰ßd—Í•‰‰×‘O‚̃f[ƒ^‹æŠÔ‚Í6•ªŠÔ‚̃f[ƒ^‘ª’è‹æŠÔ‚Ì‚¤‚¿C‰‚ß‚Ì5•ªŠÔ‚Æ‚µ‚½B‰ßd—Í•‰‰×’†‚̃f[ƒ^‹æŠÔ‚Í+1.5 Gz‚É“ž’B‚µ‚½Žž“_‚©‚ç5•ª–ˆ‚ÉC0-5•ªC5-10•ªC10-15•ªC‹y‚Ñ15-20•ª‚Ì4‹æŠÔ‚Æ‚µ‚½B•‰‰×‘O‚Ì1‹æŠÔ‚Æ•‰‰×’†‚Ì4‹æŠÔ‚ÌŒv5‹æŠÔ‚ÅCˆÈ‰º‚Ì‚Æ‚¨‚èCŠe€–Ú‚Ì’l‚ðŽZo‚µ‚½B‚È‚¨C“r’†‚ʼnßd—Í•‰‰×‚𒆎~‚µ‚½2—á‚Ì‚¤‚¿C1—á‚Í•‰‰×Œp‘±ŽžŠÔ‚ª20•ª‚ð’´‚¦‚Ä‚¢‚½‚½‚ßC•‰‰×’†‚̃f[ƒ^‹æŠÔ‚ª4‹æŠÔ‚ ‚èC‚à‚¤1—á‚Í•‰‰×Œp‘±ŽžŠÔ‚ª15•ª40•b‚Å‚ ‚Á‚½‚½‚ßC•‰‰×’†‚̃f[ƒ^‹æŠÔ‚ª3‹æŠÔ‚É‚È‚Á‚Ä‚¢‚éB
@‚Í‚¶‚ß‚ÉC”Ä—pƒf[ƒ^‹L˜^‰ð̓\ƒtƒgƒEƒFƒAiNotocord-hem 4.3.0.74j‚É‹L˜^‚³‚ꂽ“®–¬ˆ³”gŒ`‚Æ’†‘å”]“®–¬‚Ì”]ŒŒ—¬‘¬“x”gŒ`‚©‚çC“¯ƒ\ƒtƒgƒEƒFƒAã‚Å1”–ˆ‚Ì•½‹ÏŒŒˆ³iMAPj‹y‚Ñ•½‹Ï”]ŒŒ—¬‘¬“xiMCBFVj‚ðŒŸo‚µ‚½BŽŸ‚ÉC—¼ŽÒ‚ð4 Hz‚ÌŽžŠÔ‰ð‘œ“x‚ÅüŒ`•âŠÔ‚É‚æ‚胊ƒTƒ“ƒvƒŠƒ“ƒO‚µ‚½B‚»‚ÌŒãC‚‘¬ƒt[ƒŠƒG•ÏŠ·‚É‚æ‚è‹æŠÔ•½‹Ï’l‚ɑ΂·‚éŽü”g”i0.0078125 Hzj–ˆ‚Ì•Ï“®—ÊiƒXƒyƒNƒgƒ‹j‚ðŽZo‚µ‚½B‚³‚ç‚ÉCŠeƒf[ƒ^‹æŠÔ‚É‚¨‚¯‚錌ˆ³‚Æ”]ŒŒ—¬‘¬“x‚Ì“®“I‚ÈŠÖŒW«‚ð•]‰¿‚·‚邽‚ßC•½‹ÏŒŒˆ³•Ï“®‚©‚畽‹Ï”]ŒŒ—¬‘¬“x•Ï“®‚Ö‚Ì“`’BŠÖ”‚ðƒNƒƒXƒXƒyƒNƒgƒ‹–@‚ÅŽZo‚µ‚½B‚È‚¨C•Ï“®—Ê‚ÌŽZo‹y‚Ñ“`’BŠÖ”‰ðÍ‚ÍCHanning‘‹ŠÖ”‚ð—p‚¢‚½Welch–@iƒZƒOƒƒ“ƒg’·512ƒ|ƒCƒ“ƒgC50%ƒI[ƒo[ƒ‰ƒbƒvj‚É‚æ‚èŽÀŽ{‚µ‚½B“`’BŠÖ”‰ðÍ‚Å“¾‚ç‚ê‚éŽw•W‚̓Rƒq[ƒŒƒ“ƒXiCoherencejCƒtƒF[ƒYiPhasejCƒQƒCƒ“iGainj‚Ì3‚‚ł ‚èCŠeX‚̈Ӌ`‚ÍŽŸ‚Ì‚Æ‚¨‚è‚Å‚ ‚éB
@ƒRƒq[ƒŒƒ“ƒX‚ÍC2Žw•WŠÔ‚Ì’¼ü‘ŠŠÖ«iüŒ`«j‚ðŽ¦‚·‚à‚Ì‚ÅCŽå‚ɃtƒF[ƒY‚âƒQƒCƒ“‚ðŽw•W‚Æ‚µ‚ÄŽg—p‚·‚邱‚Æ‚ÌM—Š«‚ð•]‰¿‚·‚邽‚ß‚É—p‚¢‚ç‚ê‚éBƒRƒq[ƒŒƒ“ƒX‚Í0‚©‚ç1‚ÌŠÔ‚Ì’l‚ð‚Æ‚èC2Žw•WŠÔ‚ÉŠ®‘S‚È’¼ü‘ŠŠÖ«‚ª‚ ‚éꇂÉ1‚Æ‚È‚éBˆê”Ê“I‚ɃRƒq[ƒŒƒ“ƒX‚ª0.5ˆÈã‚ ‚ê‚΃QƒCƒ“‚âƒtƒF[ƒY‚Ì”’l‚ð•]‰¿‚ÉŽg—p‚·‚éM—Š«‚ª‚ ‚é‚à‚Ì‚ÆŒ©‚È‚³‚ê‚é17jBƒtƒF[ƒY‚Í2Žw•W‚ÌŽžŠÔŠÖŒW‚ðŽ¦‚·‚à‚Ì‚Å‚ ‚éBƒQƒCƒ“‚ÍM†“`’B‚Ì‹­‚³‚ðŽ¦‚·‚à‚Ì‚Å‚ ‚éBŒŒˆ³•Ï“®‚Æ”]ŒŒ—¬‘¬“x•Ï“®‚̊Ԃ̃QƒCƒ“‚ÍCŒŒˆ³•Ï“®‚©‚ç”]ŒŒ—¬‘¬“x•Ï“®‚Ö‚ÌM†“`’B‚Ì‹­‚³‚ð’è—ʉ»‚µ‚½‚à‚Ì‚Å‚ ‚èCƒQƒCƒ“‚ª¬‚³‚¢ê‡‚ÍCŒŒˆ³•Ï“®‚©‚ç”]ŒŒ—¬‘¬“x•Ï“®‚Ö‚Ì“`’B‚ª—}§‚³‚ê‚Ä‚¨‚èC‚‚܂蓮“I”]ŒŒ—¬Ž©“®’²ß”\‚ª‘‹­‚µ‚Ä‚¢‚éó‘ԂƉðŽß‚³‚ê‚éB
@æsŒ¤‹†‚©‚ç”»–¾‚µ‚Ä‚¢‚éŽü”g”“Á«‚ÉŠî‚«C’´’áŽü”g”ˆæivery low frequency range;VLF:0.02-0.07 HzjC’áŽü”g”ˆæilow frequency range;LF:0.07-0.20 Hzj‹y‚Ñ‚Žü”g”ˆæihigh frequency range;HF: 0.20-0.35 Hzj‚Ì3Žü”g”ˆæ‚É‚¨‚¯‚镽‹ÏŒŒˆ³•Ï“®‹y‚Ñ•½‹Ï”]ŒŒ—¬‘¬“x•Ï“®‚ÌÏ•ª’l‚ð‚»‚ê‚¼‚êŽZo‚µCƒRƒq[ƒŒƒ“ƒXCƒtƒF[ƒYCƒQƒCƒ“‚Í“¯Žü”g”ˆæ‚É‚¨‚¯‚镽‹Ï’l‚ð‚»‚ê‚¼‚êŽZo‚µ‚½4,16jB‚±‚ê‚ç‚̃XƒyƒNƒgƒ‹‰ðÍ‚É‚æ‚é•Ï“®—Ê‚ÌŽZo‹y‚уNƒƒXƒXƒyƒNƒgƒ‹–@‚É‚æ‚é“`’BŠÖ”‰ðÍ‚ÍC‘Û”]ŒŒ—¬Ž©“®’²ß”\Œ¤‹†ƒlƒbƒgƒ[ƒNiCARNet; international cerebral autoregulation research networkj‚Ì’ñŒ¾2j‚ÉŠî‚­‚à‚Ì‚Å‚ ‚èCƒf[ƒ^‰ð̓\ƒtƒgƒEƒFƒADADiSPiDSP DevelopmentC•Ä‘j‚ð—p‚¢‚Äs‚Á‚½B
@“Œv‰ðÍ
@‚Í‚¶‚ß‚ÉCKolmogorov-SmirnovŒŸ’è‚ų‹K«‚ðCBartlettŒŸ’è‚Å“™•ªŽU«‚ð•]‰¿‚µ‚½B³‹K«‹y‚Ñ“™•ªŽU«‚ªŠm”F‚³‚ꂽ•Ï”‚ɂ‚¢‚Ä‚ÍCƒf[ƒ^‹æŠÔi•‰‰×‘OC•‰‰×0-5•ªC5-10•ªC10-15•ªC15-20•ª‚Ì‘S5‹æŠÔj‚ðˆöŽq‚Æ‚µ‚½ˆêŒ³”z’u”½•œ‘ª’蕪ŽU•ªÍione-way repeated-measures analysis of variance;ANOVAj‚ðs‚Á‚½ŒãCŽ–ŒãŒŸ’è‚Æ‚µ‚ÄHolm–@‚É‚æ‚èP’l‚ð’²®‚µ‚½‘Ήž‚Ì‚ ‚étŒŸ’èipaired-t testj‚Å‘½d”äŠr‚ðs‚Á‚½B‚Ü‚½CˆêŒ³”z’u”½•œ‘ª’蕪ŽU•ªÍ‚É‚¨‚¢‚ÄCMauchlyŒŸ’è‚É‚æ‚è‹…–Ê«‚̉¼’肪Šü‹p‚³‚ꂽꇂÍCGreenhouse-Geisser–@‚É‚æ‚èŽZo‚µ‚½ε’l‚ð—p‚¢‚ÄŽ©—R“x‚ð’²®‚µ‚½B³‹K«‹y‚Ñ“™•ªŽU«‚̉¼’肪Šü‹p‚³‚ꂽ•Ï”‚ɂ‚¢‚Ä‚ÍCƒf[ƒ^‹æŠÔ‚ðˆöŽq‚Æ‚µ‚½FriedmanŒŸ’è‚ðs‚Á‚½ŒãCŽ–ŒãŒŸ’è‚Æ‚µ‚ÄHolm–@‚É‚æ‚èP’l‚ð’²®‚µ‚½Wilcoxon•„†‡ˆÊŒŸ’èiWilcoxon signed-rank testj‚Å‘½d”äŠr‚ðs‚Á‚½B‘S‚Ä‚Ì“Œv‰ðÍ‚ÍC“Œvƒ\ƒtƒgRiThe R Foundation for Statistical ComputingCƒI[ƒXƒgƒŠƒAj‚̃vƒƒOƒ‰ƒ€‚ÉŠî‚¢‚Ä쬂³‚ꂽ“Œvƒ\ƒtƒgEZRiŽ©Ž¡ˆã‰È‘åŠw•‘®‚³‚¢‚½‚܈ã—ÃZƒ“ƒ^[Cé‹ÊŒ§j9j‚É‚æ‚èŽÀŽ{‚µ‚½B”’l‚ÍC“Á‹L‚µ‚½ê‡‚𜂢‚Ä•½‹Ï’l±•W€•Î·‚ÅŽ¦‚µCP’l0.05–¢–ž‚ð—LˆÓ·‚ ‚è‚Æ‚µ‚½B

Œ‹‰Ê
@Table 1‹y‚ÑFig. 1‚ÍC21•ªŠÔ‚̉ßd—Íi+1.5 Gzj•‰‰×‚ðŠ®‹‚µ‚½15–¼‚ÌŒ‹‰Ê‚ðŽ¦‚·BTable 1‚ÍC‘S5‹æŠÔi•‰‰×‘OC•‰‰×0-5•ªC5-10•ªC10-15•ªC15-20•ªj‚É‚¨‚¯‚éCŠeŽü”g”ˆæ‚Å‚Ì•½‹ÏŒŒˆ³•Ï“®C•½‹Ï”]ŒŒ—¬‘¬“x•Ï“®CƒRƒq[ƒŒƒ“ƒXCƒQƒCƒ“‹y‚уtƒF[ƒY‚ðŽ¦‚µ‚½‚à‚Ì‚Å‚ ‚éB‚Ü‚½CFig. 1‚ÍC•‰‰×‘OC•‰‰×0-5•ªC‹y‚Ñ•‰‰×15-20•ª‚Ì3‹æŠÔ‚É‚¨‚¯‚镽‹ÏŒŒˆ³•Ï“®C•½‹Ï”]ŒŒ—¬•Ï“®C‹y‚уQƒCƒ“‚̃XƒyƒNƒgƒ‹‚ðŽ¦‚µ‚½‚à‚Ì‚Å‚ ‚éBFig. 2‚ÍC•‰‰×Š®‹ŽÒ‚Ì’áŽü”g”ˆæ‚Å‚Ì•½‹ÏŒŒˆ³•Ï“®C•½‹Ï”]ŒŒ—¬‘¬“x•Ï“®‹y‚уQƒCƒ“‚ÌŒoŽž•Ï‰»‚ɉÁ‚¦C“r’†‚Å•‰‰×‚𒆎~‚µ‚½2—á‚̃QƒCƒ“‚ÌŒoŽž•Ï‰»‚ðŽ¦‚µ‚½‚à‚Ì‚Å‚ ‚éB
@’´’áŽü”g”ˆæiVLFj‚Å‚ÍCƒRƒq[ƒŒƒ“ƒX‚Ì‚Ý‚ª•‰‰×0-5•ª‚ɔ䂵‚ÄC5-10•ª‹y‚Ñ10-15•ª‚Å—LˆÓ‚É‘‰Á‚µ‚½mFi4, 56j= 3.15, P = 0.020n‚ªC‚»‚Ì‘¼‚ÌŽw•W‚Í•‰‰×’†‚ð’Ê‚¶‚Ä—LˆÓ‚ȕω»‚ð”F‚ß‚È‚©‚Á‚½B
@’áŽü”g”ˆæiLFj‚Å‚ÍC•½‹ÏŒŒˆ³•Ï“®‚ÍC•‰‰×‘O‚ɔ䂵‚ÄC•‰‰×0-5•ª‚Å‚Í—LˆÓ·‚ð”F‚ß‚È‚©‚Á‚½‚ªC5-10•ªˆÈ~‚Å—LˆÓ‚É‘‰Á‚µ‚½mFi4, 56j = 4.12, P = 0.005niFig. 2¶jB•½‹Ï”]ŒŒ—¬‘¬“x•Ï“®‚ÍC•‰‰×‘O‚ɔ䂵‚ÄC•‰‰×0-5•ª‚Å—LˆÓ‚É‘‰Á‚µC‚»‚ÌŒã‚͒ቺŒXŒü‚É‚ ‚èC15-20•ª‚Å‚Í—LˆÓ·‚ð”F‚ß‚È‚©‚Á‚½mFi4, 56j = 3.55, P = 0.011niFig. 2’†‰›jBƒRƒq[ƒŒƒ“ƒX‚ÍC0.74-0.84‚͈̔͂ńˆÚ‚µ‚½BƒQƒCƒ“‚ÍC•‰‰×0-5•ª‚ɔ䂵‚ÄC15-20•ª‚Å—LˆÓ‚ɒቺ‚µ‚½mFi4, 56j = 3.65, P = 0.010niFig. 1‰ºCFig. 2‰EjB
@‚Žü”g”ˆæiHFj‚Å‚ÍC•½‹ÏŒŒˆ³•Ï“®iχ2 = 26.536, df = 4, P < 0.001jC•½‹Ï”]ŒŒ—¬‘¬“x•Ï“®iχ2 = 20.095, df = 4, P < 0.001j‚Æ‚à‚ÉC•‰‰×’†‚ð’Ê‚¶‚ÄC•‰‰×‘O‚æ‚è‚à2”{ˆÈã‚Ì•Ï“®—Ê‚Æ‚È‚Á‚Ä‚¨‚èC•½‹Ï”]ŒŒ—¬‘¬“x•Ï“®‚Ì•‰‰×0-5•ª‚𜂫‘S‚Ä—LˆÓ‚È‘‰Á‚Å‚ ‚Á‚½BƒRƒq[ƒŒƒ“ƒX‚àC•‰‰×5-10•ª‹y‚Ñ10-15•ª‚Å‚Í—LˆÓ‚É‘‰Á‚µ‚½mFi4, 56j = 3.05, P = 0.023nBˆê•ûCƒQƒCƒ“‚ÍC•‰‰×15-20•ª‚Å—LˆÓ‚ɒቺ‚µ‚½mFi4, 56j = 5.29, P = 0.001niFig. 1‰ºjB
@‚È‚¨CƒtƒF[ƒY‚ÍC’´’áŽü”g”ˆæC’áŽü”g”ˆæC‚Žü”g”ˆæ‚Ì‚¢‚¸‚ê‚É‚¨‚¢‚Ä‚à•‰‰×’†‚ð’Ê‚¶‚Ä—LˆÓ‚ȕω»‚ð”F‚ß‚È‚©‚Á‚½B
@–{ŽÀŒ±‚Å‚ÍC2—ႪƒoƒCƒ^ƒ‹ƒTƒCƒ“‚̈Ùí‚𔺂¤‹C•ª•s‰õ‚É‚æ‚è‰ßd—Í•‰‰×‚ð“r’†‚Å’†Ž~‚µ‚½B“–ŠY2—á‚ÌŒo‰ß‚͉äX‚̉ߋŽ‚Ì•ñ11j‚ÉÚq‚³‚ê‚Ä‚¢‚邽‚ßC“®“I”]ŒŒ—¬Ž©“®’²ß”\‚ÌŒ‹‰ÊˆÈŠO‚ɂ‚¢‚Ä‚ÍÈ—ª‚·‚邪C1Ç—á‚ÍŽ¸_‘OÇó‚ÌoŒ»‚É‚æ‚镉‰×’†Ž~—á‚Å‚ ‚èC‚à‚¤1—á‚͉ߌċz”­ì—lŠŒ©‚ÌoŒ»‚É‚æ‚镉‰×’†Ž~—á‚Å‚ ‚éB‚¢‚¸‚ê‚ÌÇ—á‚à‰ßd—Í•‰‰×’†Ž~ŒãCƒoƒCƒ^ƒ‹ƒTƒCƒ“‚ðŠm”F‚µ‚È‚ª‚ç‚ÌŒo‰ßŠÏŽ@‚Å‘¬‚â‚©‚É‹C•ª•s‰õ‚ªŒy‰õ‚µ‚½‚½‚ßCˆãŠw“Iˆ’u‚Ís‚Á‚Ä‚¢‚È‚¢BŽ¸_‘OÇó‚ÌoŒ»‚É‚æ‚镉‰×’†Ž~—á‚Å‚ÍC•‰‰×’†‚ð’Ê‚¶‚ÄC’áŽü”g”ˆæ‚̃QƒCƒ“‚ª‘‰Á‚µ‘±‚¯‚½m•‰‰×‘O:0.64, 0-5•ª:0.72, 5-10•ª:0.80, 10-15•ª:0.84, 15-20•ª:0.90icm/s/mmHgjniFig. 2‰ECŽÀüjBˆê•ûC‰ßŒÄ‹z”­ì—lŠŒ©‚ÌoŒ»‚É‚æ‚镉‰×’†Ž~—á‚Å‚ÍC•‰‰×’†‚ð’Ê‚¶‚Ä’áŽü”g”ˆæ‚̃QƒCƒ“‚Ì–¾‚ç‚©‚ȕω»‚ð”F‚ß‚È‚©‚Á‚½m•‰‰×‘O:0.48, 0-5•ª:0.53, 5-10•ª:0.48, 10-15•ª:0.51icm/s/mmHgjniFig. 2‰EC”jüjB

Table 1@Frequency analysis indices before and during +1.5 Gz centrifugation.
+1.0 Gz +1.5 Gz P value
Pre-hypergravity 0-5 min 5-10 min 10-15 min 15-20 min
VLF MAP-V
immHg2j
7.56±5.73 6.57±4.55 10.35±7.51 10.44±10.85 14.11±16.69 0.128
iFj
MCBFV-V
icm2/s2j
3.87±3.81 3.68±2.69 4.92±3.39 4.33±2.78 5.53±4.83 0.244
iAj
Coherence
iunitj
0.56±0.21 0.52±0.12 0.64±0.17õ 0.64±0.16õõ 0.60±0.19 0.020
iAj
Gain
icm/s/mmHgj
0.51±0.22 0.56±0.20 0.57±0.20 0.58±0.21 0.53±0.20 0.484
iAj
Phase
iradiansj
0.73±0.62 0.76±0.34 1.05±0.47 0.71±0.54 0.75±0.54 0.296
iAj
LF MAP-V
immHg2j
3.86±3.31 5.59±3.71 5.74±3.77 5.99±4.12 5.57±3.91 0.005
iAj
MCBFV-V
icm2/s2j
2.31±1.75 3.41±1.57–– 3.04±1.61 2.92±1.65 2.77±1.81 0.011
iAj
Coherence
iunitj
0.74±0.15 0.84±0.09 0.81±0.09 0.84±0.07 0.80±0.11 0.011
iAj
Gain
icm/s/mmHgj
0.73±0.18 0.81±0.17 0.72±0.16 0.73±0.15 0.70±0.16õ 0.010
iAj
Phase
iradiansj
0.57±0.14 0.51±0.16 0.51±0.20 0.54±0.15 0.54±0.14 0.392
iAj
HF MAP-V
immHg2j
0.29±0.19 0.70±0.70 0.76±0.60–– 0.74±0.56––– 0.84±0.60––– <0.001
iFj
MCBFV-V
icm2/s2j
0.34±0.29 0.68±0.69 0.73±0.68–– 0.71±0.65 0.71±0.63 <0.001
iFj
Coherence
iunitj
0.70±0.11 0.77±0.11 0.78±0.13 0.79±0.11–– 0.78±0.12 0.023
iAj
Gain
icm/s/mmHgj
0.92±0.22 0.92±0.20 0.88±0.17 0.88±0.19 0.81±0.19 0.001
iAj
Phase
iradiansj
0.19±0.19 0.09±0.14 0.12±0.14 0.13±0.12 0.16±0.17 0.147
iAj

Values are mean ± standard deviation.@Pre-hypergravity:average of pre-hypergravity 5-min data segment i+1.0 Gzj;0-5 min, 5-10 min, 10-15 min, and 15-20 min:5-minute averages of the 0-5-min, 5-10-min, 10-15-min, and 15-20-min data segments during +1.5 Gz centrifugation;VLF:very low frequency range i0.02-0.07 Hzj;LF:low frequency range i0.07-0.20 Hzj;HF:high frequency range i0.20-0.35 Hzj;MAP-V:mean arterial blood pressure variability; MCBFV-V:mean cerebral blood flow velocity variability.@P values are expressed as iAj one-way repeated-measures analysis of variance with data segment as a factor, or iFj Friedman tests with data segment as a factor.@*P < 0.05, **P < 0.01, ***P < 0.001 iP value of Holmfs post hoc test compared with the pre-hypergravity data segmentj;õP < 0.05, õõP < 0.01 iP value of Holmfs post hoc test compared with the 0-5-min data segmentj.

Fig. 1@Group-averaged power spectrum density of mean arterial blood pressure iMAPj and mean cerebral blood flow velocity iMCBFVj and group-averaged transfer function gain between MAP and MCBFV. Solid lines:Pre-hypergravity data, Dotted lines:0-5 min-data during +1.5 Gz centrifugation, Dashed lines:15-20 min-data during +1.5 Gz centrifugation, VLF:very low frequency range i0.02-0.07 Hzj, LF:low frequency range i0.07-0.20 Hzj, HF: high frequency range i0.20-0.35 Hzj.

Fig. 2 Time course of changes in variabilities of mean arterial blood pressure iMAPj and mean cerebral blood flow velocity iMCBFVj and transfer function gain between MAP and MCBFV before and during +1.5 Gz centrifugation.
Left, center and right graphs show time course of changes in MAP variabilities, MCBFV variabilities, and transfer function gain between MAP and MCBFV in low frequency range i0.07-0.20 Hzj, respectively.@Pre-hypergravity: pre-hypergravity 5-min data segment i+1.0 Gzj.@1.5 Gz 0-5 min, 1.5 Gz 5-10 min, 1.5 Gz 10-15 min, and 1.5 Gz 15-20 min:0-5-min, 5-10-min, 10-15-min, and 15-20-min data segments during +1.5 Gz centrifugation.@White bars with error bars represent the group-averaged values and standard errors of the means for all participants who completed the study protocol in = 15j.@In the right graph, solid line with round markers represents the changes in transfer function gain for the incomplete participant due to symptoms of pre-syncope, and dashed line with square markers represents those for the incomplete participant due to nausea and hyperventilation.@*P < 0.05, **P < 0.01 iP value of Holmfs post hoc testj

lŽ@
@–{Œ¤‹†‚ÍCŒy“x‰ßd—Í•‰‰×’†‚Ì“®“I”]ŒŒ—¬Ž©“®’²ß”\‚ÌŒoŽž•Ï‰»‚ɂ‚¢‚ÄCŒŒˆ³‹y‚Ñ”]ŒŒ—¬‘¬“x‚Ì•Ï“®—Ê‚ðŽZo‚µC—¼ŽÒ‚Ì“`’BŠÖ”‰ðÍ‚É‚æ‚Á‚ÄŒŸ“¢‚µ‚½‚à‚Ì‚Å‚ ‚éB•‰‰×Š®‹ŽÒ‚Ì’áŽü”g”ˆæ‚Å‚ÌŒ‹‰Ê‚Å‚ÍCŒŒˆ³•Ï“®‚ÍC•‰‰×‘O‚ɔ䂵‚ÄC•‰‰×ŠJŽn’¼Œã‚©‚瑉ÁŒXŒü‚É‚ ‚èC•‰‰×5-10•ªˆÈ~CI—¹‚Ü‚Å—LˆÓ‚É‘‰Á‚µ‚½Bˆê•ûC”]ŒŒ—¬•Ï“®‚ÍC•‰‰×‘O‚ɔ䂵‚ÄC•‰‰×ŠJŽn’¼Œãi0-5•ªj‚É—LˆÓ‚É‘‰Á‚µ‚½‚ªC‚»‚ÌŒã’ቺŒXŒü‚É‚ ‚èC•‰‰×15-20•ª‚Å‚Í—LˆÓ·‚ð”F‚ß‚È‚©‚Á‚½B‚Ü‚½CŒŒˆ³•Ï“®‚©‚ç”]ŒŒ—¬‘¬“x•Ï“®‚Ö‚Ì“`’BŠÖ”‰ðÍ‚Å‚ÍCƒQƒCƒ“‚ª•‰‰×0-5•ª‚©‚ç15-20•ª‚ÌŠÔ‚Å—LˆÓ‚ɒቺ‚µ‚½B‚±‚ê‚ç‚ÌŒ‹‰Ê‚æ‚èC•‰‰×ŠJŽn’¼Œã‚É”]zŠÂ‚Í•sˆÀ’艻‚·‚邪C•‰‰×’†‚Ì“®“I”]ŒŒ—¬Ž©“®’²ß”\‚Ì‘‹­‚É‚æ‚èCŒŒˆ³•Ï“®‘‰Á‚É”º‚¤”]ŒŒ—¬•Ï“®‘‰Á‚ª™X‚É—}§‚³‚ê‚é‰Â”\«‚ªŽ¦´‚³‚ꂽBˆê•ûCŽ¸_‘OÇó‚ÌoŒ»‚É‚æ‚蕉‰×‚ð“r’†‚Å’†Ž~‚µ‚½—á‚Å‚ÍC’áŽü”g”ˆæ‚ł̃QƒCƒ“‚ª•‰‰×ŠJŽn’¼Œã‚©‚畉‰×’†Ž~‚Ü‚Å‘‚¦‘±‚¯‚Ä‚¨‚èC“®“I”]ŒŒ—¬Ž©“®’²ß”\‚Ì‘ˆ«‚ªŽ¦´‚³‚ꂽB
@S“d}‚â˜A‘±ŒŒˆ³Œv‚Ì”gŒ`‚ðŒ©‚é‚ÆCˆêŒ©‚·‚é‚Æ‹K‘¥³‚µ‚­ˆÀ’肵‚Ä‚¢‚é‚悤‚ÉŒ©‚¦‚éˆÀÃó‘Ô‚ÌŒ’íl‚Ì‹L˜^‚Å‚ ‚Á‚Ä‚àC”äŠr“I‹}‘¬‚É‘å‚«‚­—h‚ê“®‚¢‚Ä‚¢‚éB‚±‚Ì—h‚炬‚ðŽ©”­•Ï“®‚ƌĂÑCS”‚Í20 bpmˆÈãCŽûkŠúŒŒˆ³‚Í20 mmHgˆÈã‚Ì•‚Å•Ï“®‚µ‚Ä‚¢‚é8jBŒŒˆ³‚ÌŽ©”­•Ï“®‚ÍC”]ŠÁ—¬ˆ³‚Ì•Ï“®‚ð‰î‚µC”]ŒŒ—¬‚ð•Ï‰»‚³‚¹‚éBŽÀÛ‚É”]ŒŒ—¬‚Ì•]‰¿Žw•W‚Æ‚µ‚Ä•‹y‚µ‚Ä‚¢‚éŒo“ªŠWƒhƒvƒ‰ŒŒ—¬Œv‚Å‹L˜^‚µ‚½”]ŒŒ—¬‘¬“x”gŒ`‚Í”äŠr“I‹}‘¬‚È•Ï“®‚ð”F‚ß‚éBLassen12j‚É‚æ‚Á‚ĉ‚ß‚Ä’ñ¥‚³‚ꂽC’èí“I‚È•½‹ÏŒŒˆ³‚ª60`150 mmHg‚͈͓̔à‚É‚ ‚ê‚Δ]ŒŒ—¬‚ªˆê’è‚É•Û‚½‚ê‚é‚Æ‚¢‚¤ŒÃ“T“I‚È”]ŒŒ—¬Ž©“®’²ß‚ÌŠT”OiÓI”]ŒŒ—¬Ž©“®’²ß”\j‚ɑ΂µC‚±‚Ì‹}‘¬‚È•Ï“®‚ðl—¶‚µ‚½ŒŒˆ³•Ï“®‚Æ”]ŒŒ—¬•Ï“®‚ÌŠÖŒW«‚ð•]‰¿‚µ‚½‚à‚Ì‚ª“®“I”]ŒŒ—¬Ž©“®’²ß”\‚ƌĂ΂ê‚éŠT”O‚Å‚ ‚èCŒŒˆ³•Ï“®‚©‚ç”]ŒŒ—¬•Ï“®‚Ö‚Ì“`’B‚ð—}§‚·‚邱‚Æ‚Å”]ŒŒ—¬‚ð‚æ‚èˆê’è‚Ɉێ‚·‚é‹@”\‚Å‚ ‚éB’èí“I‚È”]ŒŒ—¬‚ªŒy“x’ቺ‚µ‚Ä‚¢‚éŒy“x‰ßd—͊‹«10,11j‚É‚¨‚¢‚ÄC‹}‘¬‚È”]ŒŒ—¬•Ï“®‚ª‘‰Á‚·‚é‚ÆCŽüŠú“I‚É•Ï“®‚·‚é”]ŒŒ—¬‚ÌuŠÔ“I‚ÈÅ’á’l‚ª’˜–¾‚ɒቺ‚µCŽ¸_‚ÉŽŠ‚郊ƒXƒN‚ª‘‰Á‚·‚邽‚ßiFig. 3jC“®“I”]ŒŒ—¬Ž©“®’²ß”\‚ªŒy“x‰ßd—Í•‰‰×’†‚Ì”]ŒŒ—¬ˆÛŽ‚Éd—v‚È–ðŠ„‚ð‰Ê‚½‚·‚Æl‚¦C¡‰ñ‰äX‚ÍŒy“x‰ßd—Í•‰‰×’†‚Ì“®“I”]ŒŒ—¬Ž©“®’²ß”\‚ÌŒoŽž•Ï‰»‚ð•]‰¿‚·‚é‚ÉŽŠ‚Á‚½B
@ŒŒˆ³‚â”]ŒŒ—¬‘¬“x‚Æ‚¢‚Á‚½Œv‘ª€–Ú‚ÍCˆê’莞ŠÔ“à‚Ì•½‹Ï’l‚ð•]‰¿Žw•W‚Æ‚·‚邱‚Æ‚ªˆê”Ê“I‚Å‚ ‚éB‚±‚Ì•û–@‚Å‚ÍC’èí“I‚ÈŒŒˆ³‚â”]ŒŒ—¬‘¬“x‚ª•]‰¿‚³‚ê‚Ä‚¨‚èCŽ©”­•Ï“®‚̉e‹¿‚Í–³Ž‹‚³‚ê‚邱‚Æ‚É‚È‚éB‚»‚±‚ÅCGiller4j‚É‚æ‚Á‚Ä’ñ¥‚³‚ꂽCŒŒˆ³‚Æ”]ŒŒ—¬‘¬“x‚ÌŽü”g”–ˆ‚Ì•Ï“®—Ê‚ðŽZo‚µC‚³‚ç‚É—¼ŽÒ‚Ì“`’BŠÖ”‰ðÍ‚ðs‚¤‚±‚Æ‚ÅŽ©”­•Ï“®‚̉e‹¿‚ð’è—ʉ»‚·‚é•û–@‚ª“®“I”]ŒŒ—¬Ž©“®’²ß”\‚Ì•]‰¿–@‚Æ‚µ‚ÄÅ‚à•‹y‚µ‚Ä‚¢‚é2jB‚±‚ê‚Ü‚Å‚É•ñ‚³‚ê‚Ä‚¢‚é—lX‚ÈŒŒˆ³•Ï“®‚Æ”]ŒŒ—¬‘¬“x•Ï“®‚ÌŠÖŒW‚̃nƒCƒpƒXƒtƒBƒ‹ƒ^[“I‚ÈŽü”g”“Á«4,16j‚ðl—¶‚µ‚ÄC–{Œ¤‹†‚Å‚ÍC“®“I”]ŒŒ—¬Ž©“®’²ß”\‚ð•]‰¿‚·‚éÛ‚É’´’áŽü”g”ˆæiVLF:0.02-0.07 HzjC’áŽü”g”ˆæiLF:0.07-0.20 Hzj‹y‚Ñ‚Žü”g”ˆæiHF:0.20-0.35 Hzj‚Ì3Žü”g”ˆæ‚É•ª‚¯‚ĉðÍ‚ðs‚Á‚Ä‚¨‚èCŽü”g”ˆæ–ˆ‚ÉlŽ@‚·‚éB
@‚Í‚¶‚ß‚ÉCÅ‚à‘½‚­‚ÌŽw•W‚Å—LˆÓ‚ȕω»‚ª”F‚ß‚ç‚ꂽ’áŽü”g”ˆæiLF:0.07-0.20 Hzj‚ɂ‚¢‚ÄlŽ@‚·‚éB•‰‰×Š®‹ŽÒ15–¼‚Å‚ÍC•‰‰×ŠJŽn’¼Œãi•‰‰×0-5•ªj‚Ì‹æŠÔ‚É‚¨‚¯‚é”]ŒŒ—¬‘¬“x•Ï“®‚ª—LˆÓ‚É‘‰Á‚µ‚Ä‚¢‚½iFig. 2’†‰›jB‘Oq‚Ì‚Æ‚¨‚èC“®“I”]ŒŒ—¬Ž©“®’²ß”\‚ªŒŒˆ³•Ï“®‚©‚ç”]ŒŒ—¬•Ï“®‚Ö‚Ì“`’B‚ð—}§‚·‚éC‚‚܂è”]ŒŒ—¬•Ï“®‚𬂳‚­‚·‚邽‚ß‚Ì’²ß‹@”\‚Å‚ ‚邱‚Æ‚ðl—¶‚·‚é‚ÆC‚±‚̕ω»‚ÍC•‰‰×ŠJŽn’¼Œã‚Ì”]zŠÂ‚ª•sˆÀ’艻‚µ‚½‚à‚̂ƉðŽß‚Å‚«‚éB’áŽü”g”ˆæ‚ÌŒŒˆ³•Ï“®‚É‚ÍCŒðŠ´_Œo«‚ÌŒŒŠÇŠˆ“®‚Ì•Ï“®‚ªŠÜ‚Ü‚ê‚é14j‚½‚ßCŒðŠ´_ŒoŠˆ“®‚̘´i‚ª‚»‚Ì—vˆö‚Ì1‚‚Ƃµ‚Äl‚¦‚ç‚ꂽB
@‚»‚ÌŒãC”]ŒŒ—¬‘¬“x•Ï“®‚͒ቺŒXŒü‚É‚ ‚èC•‰‰×I—¹‚É‚©‚¯‚Ä•‰‰×‘O…€‚É–ß‚è‚‚‚ ‚Á‚½iFig. 2’†‰›j‚̂ɑ΂µCŒŒˆ³•Ï“®‚ÍC•‰‰×5-10•ªˆÈ~C•‰‰×I—¹‚Ü‚Å—LˆÓ‚É‘‰Á‚µ‘±‚¯‚Ä‚¢‚½iFig. 2¶jB‚±‚ÌŒŒˆ³•Ï“®‚Ì‘‰Á‚ªŽ‘±‚µ‚Ä‚¢‚é‚É‚àŠÖ‚í‚炸C”]ŒŒ—¬‘¬“x•Ï“®‚ª’ቺŒXŒü‚É‚ ‚é‚Æ‚¢‚¤ó‹µ‚ÍCŒŒˆ³•Ï“®‘‰Á‚É”º‚¤”]ŒŒ—¬‘¬“x•Ï“®‘‰Á‚ª—}§‚³‚ê‚Ä‚¢‚éC‚‚܂蓮“I”]ŒŒ—¬Ž©“®’²ß”\‚ª‘‹­‚µ‚Ä‚¢‚邱‚Æ‚ðˆÓ–¡‚·‚é‚Æl‚¦‚ç‚ê‚éBŽÀÛ‚ÉCŒŒˆ³•Ï“®‚©‚ç”]ŒŒ—¬‘¬“x•Ï“®‚Ö‚Ì“`’B‚Ì‹­‚³‚ÌŽw•W‚Å‚ ‚éƒQƒCƒ“‚ªC•‰‰×’†‚É—LˆÓ‚ɒቺ‚µ‚Ä‚¢‚邱‚Æ‚©‚ç‚àiFig. 1‰ºCFig. 2‰EjC•‰‰×’†‚Ì“®“I”]ŒŒ—¬Ž©“®’²ß”\‚Ì‘‹­‚ªŽ¦´‚³‚ꂽB“Á‚ÉC‚±‚ÌŽü”g”ˆæ‚Å‚ÍCƒRƒq[ƒŒƒ“ƒX‚ª•‰‰×‘O‚©‚畉‰×I—¹‚Ü‚Å0.74-0.84‚Æ‚’l‚Å„ˆÚ‚µ‚Ä‚¢‚邽‚ßCƒQƒCƒ“‚Í•]‰¿Žw•W‚Æ‚µ‚ÄM—Š‚Å‚«‚é‚à‚Ì‚Å‚ ‚é‚Æl‚¦‚ç‚ꂽB
@‘Oq‚µ‚½‚Æ‚¨‚èC’èí“I‚É”]ŒŒ—¬‚ªŒy“x’ቺ‚µ‚½ó‹µ‚ÅC‚³‚ç‚É”]ŒŒ—¬•Ï“®‚ª‘‰Á‚µ‚½ê‡‚É‚ÍCŽ¸_‚ð‹N‚±‚µ‚¤‚é’ö“x‚ÌuŠÔ“I‚È”]ŒŒ—¬’ቺ‚𗈂·‰Â”\«‚ª‚‚Ü‚é‚Æl‚¦‚ç‚ê‚éiFig. 3jB¡‰ñ‚ÌŽÀŒ±‚É‚¨‚¯‚镉‰×Š®‹ŽÒ‚Å‚ÍC•‰‰×Œã”¼‚Å’èí“I‚É”]ŒŒ—¬‚ªŒy“x’ቺ‚µ‚Ä‚¨‚è11jCŒŒˆ³•Ï“®‚à‘‰Á‚µ‚Ä‚¢‚é󋵂ł ‚Á‚½B‚±‚̂悤‚È󋵂ɂ¨‚¢‚Ä”]ŒŒ—¬‘¬“x•Ï“®‚à‘‰Á‚·‚é‚ÆCuŠÔ“I‚É’˜–¾‚È”]ŒŒ—¬’ቺ‚𗈂·‹°‚ꂪ‚ ‚邪C•‰‰×Š®‹ŽÒ‚Å‚ÍC“®“I”]ŒŒ—¬Ž©“®’²ß”\‚ð‘‹­‚³‚¹‚邱‚Æ‚ÅCuŠÔ“I‚È”]ŒŒ—¬‚Ì’˜–¾’ቺ‚ð–h‚¢‚Å‚¢‚½‚ƉðŽß‚Å‚«‚éB‚‚܂èC•‰‰×’†‚Ì“®“I”]ŒŒ—¬Ž©“®’²ß”\‚Ì‘‹­‚ÍCŽüŠú“I‚É•Ï“®‚·‚é”]ŒŒ—¬‚ÌuŠÔ“I‚È’˜–¾’ቺ‚ð–h‚®‚Æ‚¢‚¤C’èí“I‚È”]ŒŒ—¬’ቺ‚̉e‹¿‚ð‹ÇŒÀ‚³‚¹‚邽‚ß‚Ì‘ãž«‚̕ω»‚Å‚ ‚Á‚½‰Â”\«‚ªŽ¦´‚³‚ꂽB
@ˆê•ûCŽ¸_‘OÇó‚ÌoŒ»‚É‚æ‚蕉‰×‚𒆎~‚µ‚½1—á‚Å‚ÍC’áŽü”g”ˆæ‚ł̃QƒCƒ“‚ªC•‰‰×ŠJŽn’¼Œã‚©‚畉‰×I—¹‚Ü‚ÅŒp‘±‚µ‚Ä‘‰Á‚µ‚Ä‚¨‚èiFig. 2‰ECŽÀüjC•‰‰×’†‚ð’Ê‚¶‚Ä™X‚É“®“I”]ŒŒ—¬Ž©“®’²ß”\‚ªŒ¸Žã‚µ‚Ä‚¢‚Á‚½‰Â”\«‚ªŽ¦´‚³‚ꂽB‚‚܂èC•‰‰×’†‚Ì“®“I”]ŒŒ—¬Ž©“®’²ß”\‚ÌŒ¸Žã‚É‚æ‚èC’èí“I‚È”]ŒŒ—¬’ቺ‚̉e‹¿‚ð‹ÇŒÀ‚³‚¹‚邱‚Æ‚ª‚Å‚«‚¸C’˜‚µ‚¢”]ŒŒ—¬’ቺ‚𗈂µCŽ¸_‘OÇó‚ð‹N‚±‚µ‚½‚à‚Ì‚Æl‚¦‚ç‚ê‚éBZhang‚ç17j‚ÍC‰º”¼g‰Aˆ³•‰‰×ilower body negative pressure;LBNPj’†‚Ì“®“I”]ŒŒ—¬Ž©“®’²ß”\‚ð•]‰¿‚µ‚½ŽÀŒ±‚É‚¨‚¢‚ÄCŽ¸_‘OÇó‚ªoŒ»‚·‚é’¼‘O‚Ì’áŽü”g”ˆæ‚ł̃QƒCƒ“‚ª•‰‰×‘O‚æ‚è‚à—LˆÓ‚É‘‰Á‚µC“®“I”]ŒŒ—¬Ž©“®’²ß”\‚ªŒ¸Žã‚·‚邱‚Æ‚ð•ñ‚µ‚Ä‚¢‚éB‚±‚ê‚Í–{Œ¤‹†‚Æ“¯—l‚ÌŠŒ©‚Å‚ ‚èCŽ¸_‘OÇó‚ªoŒ»‚·‚é‚悤‚È’˜‚µ‚¢”]ŒŒ—¬’ቺ‚𗈂·ó‹µ‚Å‚ÍC“®“I”]ŒŒ—¬Ž©“®’²ß”\‚ªŒ¸Žã‚µ‚Ä‚¢‚é‚à‚Ì‚Æl‚¦‚ç‚ꂽB
@ŽŸ‚ÉC‚Žü”g”ˆæiHF:0.20-0.35 Hzj‚Å‚ÍC•‰‰×Š®‹ŽÒ‚ÌŒŒˆ³•Ï“®C”]ŒŒ—¬‘¬“x•Ï“®‚Æ‚à‚É•‰‰×’†‚ð’Ê‚¶‚ÄC•‰‰×‘O‚Ì2”{ˆÈã‚Æ•Ï“®—Ê‚Ì’˜–¾‚È‘‰Á‚ð”F‚ß‚½Bˆê”Ê“I‚ÉC“`’BŠÖ”‰ðÍ‚Å‚ÍC“ü—ͬ•ª‚ª‘å‚«‚­‚È‚é‚ÆC’¼ü‘ŠŠÖ«‚ª‚‚­‚È‚éC‚‚܂èƒRƒq[ƒŒƒ“ƒX‚ª‘å‚«‚­‚È‚éB‚æ‚Á‚ÄC–{ŽÀŒ±‚Å‚Í“`’BŠÖ”‰ðÍ‚Ì“ü—ͬ•ª‚Å‚ ‚錌ˆ³•Ï“®‚ª•‰‰×’†‚É’˜–¾‚É‘‰Á‚µ‚½‚½‚ßCƒRƒq[ƒŒƒ“ƒX‚ª•‰‰×’†‚É‘‰Á‚µ‚½‚à‚Ì‚Æl‚¦‚ç‚ê‚éB‚±‚ÌŒ»Û‚ÍCZhang‚ç‚Ì•ñ17j‚É‚¨‚¯‚é’´’áŽü”g”ˆæ‚Å‚ÌŒ‹‰Ê‚ƈê’v‚µ‚Ä‚¢‚éB‚Žü”g”ˆæ‚Å‚ÌŒŒˆ³•Ï“®‚ÍCŽå‚Ɍċz‚Ì‹@ŠB“I•‰‰×‚É‚æ‚Á‚Ĉø‚«‹N‚±‚³‚ê‚邽‚ß15jCŒŒˆ³•Ï“®‚ª•‰‰×’†‚É’˜–¾‚É‘‰Á‚µ‚½‚Ì‚ÍC•‰‰×’†‚̌ċz‚Ì‹@ŠB“I•‰‰×‚ª‘‘債‚½‚½‚ß‚Å‚ ‚é‚Æl‚¦‚ç‚ê‚éBŽÀÛ‚ÉC–{ŽÀŒ±‚É‚¨‚¢‚Ä‚ÍCŒÄ‹CI––“ñŽ_‰»’Y‘f•ªˆ³‚ª•‰‰×’†‚ð’Ê‚¶‚Ä•‰‰×‘O‚æ‚è‚à—LˆÓ‚ɒቺ‚µ‚Ä‚¨‚è11jCŠ·‹C—Ê‚Ì‘‰Á‚É”º‚¤ŒÄ‹z‚Ì‹@ŠB“I•‰‰×‚Ì‘‘傪Ž¦´‚³‚ê‚Ä‚¢‚éB‚È‚¨CƒQƒCƒ“‚ÍC•‰‰×‘O‚ɔ䂵‚Ä•‰‰×15-20•ª‚Å—LˆÓ‚ɒቺ‚µ‚Ä‚¨‚èC‘Oq‚µ‚½’áŽü”g”ˆæ‚Æ“¯—l‚ÉC‚Žü”g”ˆæ‚Å‚à•‰‰×’†‚É“®“I”]ŒŒ—¬Ž©“®’²ß”\‚ª‘‹­‚·‚é‰Â”\«‚ªŽ¦´‚³‚ꂽB
@ÅŒã‚ÉC’´’áŽü”g”ˆæiVLF:0.02-0.07 Hzj‚Å‚ÍC•‰‰×Š®‹ŽÒ‚Ì‚Ù‚Æ‚ñ‚Ç‚ÌŽw•W‚ÅŒ°’˜‚ȕω»‚Í”F‚ß‚ç‚ê‚È‚©‚Á‚½‚à‚Ì‚ÌC•‰‰×’†‚ɃRƒq[ƒŒƒ“ƒX‚ÌŒy“x‚Å‚Í‚ ‚邪—LˆÓ‚È‘‰Á‚ª”F‚ß‚ç‚ꂽBƒRƒq[ƒŒƒ“ƒX‚ÍŒŒˆ³•Ï“®‚©‚ç”]ŒŒ—¬‘¬“x•Ï“®‚Ö‚ÌüŒ`«‚Ì‘ŠŠÖ‚ðŽ¦‚·Žw•W‚Å‚ ‚èCƒQƒCƒ“‚âƒtƒF[ƒY‚ÌM—Š«‚ð•]‰¿‚·‚邽‚ß‚É—p‚¢‚ç‚ê‚é‚̂ɉÁ‚¦C“®“I”]ŒŒ—¬Ž©“®’²ß”\‚ÌŽw•W‚Æ‚µ‚Ä‚à—p‚¢‚ç‚ê‚é16jB‹ï‘Ì“I‚É‚ÍCƒRƒq[ƒŒƒ“ƒX‘‰Á‚ÍCŒŒˆ³•Ï“®‚©‚ç”]ŒŒ—¬‘¬“x•Ï“®‚Ö‚ÌüŒ`«‚Ì‘ŠŠÖ‚ª‘å‚«‚­‚È‚éC‚‚܂蓮“I”]ŒŒ—¬Ž©“®’²ß”\‚ªŒ¸Žã‚µ‚Ä‚¢‚é‚ƉðŽß‚³‚ê‚éê‡‚à‚ ‚éB‚µ‚©‚µ‚È‚ª‚çC¡‰ñ‚ÌŒ‹‰Ê‚Å‚ÍCƒRƒq[ƒŒƒ“ƒX‚ª•‰‰×‘O‚©‚畉‰×I—¹‚Ü‚Å0.5‚æ‚è‚à‘å‚«‚¢’l‚Æ‚È‚Á‚Ä‚¨‚èC‚±‚ÌŽü”g”ˆæ‚É‚¨‚¯‚éƒQƒCƒ“‚âƒtƒF[ƒY‚Ì’l‚ÍM—Š‚Å‚«‚é‚à‚Ì‚Å‚ ‚éB‚»‚̃QƒCƒ“‚âƒtƒF[ƒY‚ɉÁ‚¦CŒŒˆ³•Ï“®‚â”]ŒŒ—¬‘¬“x•Ï“®‚É‚à–¾‚ç‚©‚ȕω»‚ð”F‚ß‚Ä‚¢‚È‚¢‚½‚ßC“®“I”]ŒŒ—¬Ž©“®’²ß”\‚ª•Ï‰»‚µ‚½‰Â”\«‚Í’á‚¢‚Æl‚¦‚ç‚ꂽBˆê•ûC—LˆÓ‚ȕω»‚Å‚Í‚È‚¢‚à‚Ì‚ÌC•‰‰×’†‚ÌŒŒˆ³•Ï“®‚Í‘‰ÁŒXŒü‚É‚ ‚邱‚Æ‚©‚çC‘Oq‚µ‚½‚Žü”g”ˆæ‚Æ“¯—l‚ÉC“ü—ͬ•ªiŒŒˆ³•Ï“®j‚Ì‘‰Á‚É”º‚¤ƒRƒq[ƒŒƒ“ƒX‚Ì‘‰Á‚Å‚ ‚Á‚½‰Â”\«‚ª‚‚¢‚Æl‚¦‚ç‚ꂽB
@–{ŽÀŒ±‚̔팱ŽÒ‚ÍŒ’íŽÒ‚Å‚ ‚èC”N—î‚àŽá‚¢i24 ± 1Îj‚ªC‚»‚̂悤‚Ȕ팱ŽÒŒQ‚Å‚ ‚Á‚Ä‚à+1.5 Gz‚Æ‚¢‚¤Œy“x‚̉ßd—Í•‰‰×‚ð20•ªˆÈ㎑±‚·‚é‚ÆŽ¸_‘OÇó‚ªoŒ»‚·‚邱‚Æ‚ª‚ ‚Á‚½B‚»‚Ì‚½‚ßC”]ŒŒ—¬Ž©“®’²ß”\‚ªŒ¸Žã‚µ‚Ä‚¢‚éŽÒ‚ɑ΂µ‚ÄŒy“x‰ßd—Í•‰‰×‚ðs‚¤Û‚ÍC”]ŒŒ—¬‚̃‚ƒjƒ^ƒŠƒ“ƒO‚ðŠÜ‚ÞC‚æ‚èTd‚Ȉã—Êώ@‚ª•s‰ÂŒ‡‚Å‚ ‚é‚Æ‚Æ‚à‚ÉC•‰‰×ŽžŠÔ‚ɂ‚¢‚Ä‚àTd‚ÉŒŸ“¢‚·‚é•K—v‚ª‚ ‚éB“Á‚ÉC‰F’ˆ”òsŽm‚Ìê‡C’ZŠúŠÔ‚̉F’ˆ‘ØÝ‚Å‚Í“®“I”]ŒŒ—¬Ž©“®’²ß”\Œ¸Žã‚Í”F‚ß‚ç‚ê‚È‚¢6j‚à‚Ì‚ÌC’·Šú‰F’ˆ‘ØÝ‚Í“®“I”]ŒŒ—¬Ž©“®’²ß”\Œ¸Žã‚𗈂·‰Â”\«‚ªŽ¦´‚³‚ê‚Ä‚¢‚é18jB‚æ‚Á‚ÄC’·Šú‰F’ˆ‘ØÝ‚É”º‚¤¶—Šw“I•Ï‰»‚Ì—\–hEŒyŒ¸ô‚Æ‚µ‚ÄCŒy“x‰ßd—Í•‰‰×‚ðŽÀ—p‰»‚·‚é‚É‚ ‚½‚Á‚Ä‚ÍC•‰‰×‹­“x‚╉‰×ŽžŠÔ‚Æ‚¢‚Á‚½ƒvƒƒgƒRƒ‹‚ð\•ª‚ÉŒŸ“¢‚·‚é•K—v‚ª‚ ‚éB
@–{Œ¤‹†‚ÍC‰äX‚ª‰ß‹Ž‚ÉŽÀŽ{‚µ‚½ŽÀŒ±‚Å“¾‚ç‚ꂽƒf[ƒ^‚ð’ljÁ‰ðÍ‚µ‚½‚à‚Ì‚Å‚ ‚邪C“–ŠYŽÀŒ±‚ÉŠÖ‚·‚é‰ß‹Ž‚Ì•ñ11j ‚ÅŽw“E‚µ‚½‚¢‚­‚‚©‚̧–ñ‚ª‚ ‚éB‹ï‘Ì“I‚É‚ÍC‰ßd—Í•‰‰×’†‚É’†‘å”]“®–¬Œa‚ª•Ï‰»‚·‚é‰Â”\«‚ª”Û’è‚Å‚«‚È‚¢‚Æ‚¢‚¤C”]ŒŒ—¬‚Ì•]‰¿Žw•W‚Æ‚µ‚ÄŒo“ªŠWƒhƒvƒ‰ŒŒ—¬Œv‚É‚æ‚é”]ŒŒ—¬‘¬“x‚ð—p‚¢‚éŽÀŒ±‚Å‚Í•s‰Â”ð‚ȧ–ñ‚ª‚ ‚éB‚³‚ç‚ÉC–{ŽÀŒ±‚̔팱ŽÒ‚Ì”N—î‚Æ‹ß”N‚Ì’·Šú‰F’ˆ‘Ø݃~ƒbƒVƒ‡ƒ“‚ÉŽQ‰Á‚µ‚½‰F’ˆ”òsŽm‚Ì•½‹Ï”N—î‚̈Ⴂ‚©‚çC–{Œ¤‹†‚Å“¾‚ç‚ꂽ’mŒ©‚ð‹ß”N‚̉F’ˆ”òsŽm‚â«—ˆ‚̉F’ˆ—·sŽÒ‚É‚»‚Ì‚Ü‚Ü“K—p‚·‚邱‚Æ‚Í‚Å‚«‚È‚¢‰Â”\«‚ª‚ ‚é‚Æ‚¢‚¤§–ñ‚à‚ ‚éB

Fig. 3 Schema for explaining an impact of changes in mean cerebral blood flow velocity iMCBFVj variability.
This schema is to explain that increases in MCBFV variability cause severe decreases in instantaneous minimum MCBFV, having a risk of syncope even under the situation where steady-state MCBFV is slightly decreased. If there are no changes in MCBFV variability, the amounts of decreases in steady-state MCBFV and instantaneous minimum MCBFV are same iblack block arrowj.@However, if MCBFV variability is increased, the amount of decreases in instantaneous minimum MCBFV iwhite block arrow and circlesj is larger than that of steady-state MCBFV iblack block arrowj, leading to instantaneous severe cerebral hypoperfusion. Increases in MCBFV variability have a potential risk of leading to syncope even if decreases in steady-state MCBFV is slight.@Thus, dynamic cerebral autoregulation plays an important role to suppress these increases in MCBFV variability and to tolerate syncope.

‚Ü‚Æ‚ß
@–{Œ¤‹†‚Å‚ÍC‰äX‚̉ߋŽ‚ÌŽÀŒ±ƒf[ƒ^11j‚ð—p‚¢‚ÄCŒŒˆ³‹y‚Ñ”]ŒŒ—¬‘¬“x‚Ì•Ï“®—Ê‚ðŽZo‚µC—¼ŽÒ‚Ì“`’BŠÖ”‰ðÍ‚ðs‚¤‚±‚Æ‚ÅC‚±‚ê‚Ü‚Å‚É•ñ‚³‚ꂽ‚±‚Æ‚Ì‚È‚¢Œy“x‰ßd—Í•‰‰×’†‚Ì“®“I”]ŒŒ—¬Ž©“®’²ß”\‚ÌŒoŽž•Ï‰»‚ðŒŸ“¢‚µ‚½B
@21•ªŠÔ‚Ì+1.5 Gz•‰‰×‚ðŠ®‹‚µ‚½ŽÒ‚Ì’áŽü”g”ˆæ‚ÌŒ‹‰Ê‚ÍC”]ŒŒ—¬•Ï“®‚ªC•‰‰×‘O‚ɔ䂵‚ÄC•‰‰×0-5•ª‚Å—LˆÓ‚É‘‰Á‚µC•‰‰×ŠJŽn’¼Œã‚É”]zŠÂ‚ª•sˆÀ’艻‚µ‚Ä‚¢‚é‚Æl‚¦‚ç‚ꂽB‚»‚ÌŒãC”]ŒŒ—¬•Ï“®‚͒ቺŒXŒü‚É‚ ‚èC•‰‰×15-20•ª‚Å‚Í•‰‰×‘O‚Æ—LˆÓ·‚ð”F‚ß‚È‚©‚Á‚½B‚³‚ç‚ÉCŒŒˆ³•Ï“®‚©‚ç”]ŒŒ—¬‘¬“x•Ï“®‚Ö‚Ì“`’BŠÖ”‰ðÍ‚Å‚ÍCƒQƒCƒ“‚ª•‰‰×0-5•ª‚©‚ç15-20•ª‚ÌŠÔ‚Å—LˆÓ‚ɒቺ‚µ‚½B‚æ‚Á‚ÄC•‰‰×Š®‹ŽÒ‚Å‚Í•‰‰×’†‚É“®“I”]ŒŒ—¬Ž©“®’²ß”\‚ª‘‹­‚·‚é‰Â”\«‚ªŽ¦´‚³‚ꂽB
@‚±‚ê‚ç‚ÌŒ‹‰Ê‚æ‚èCŒy“x‰ßd—Í•‰‰×’†‚É“®“I”]ŒŒ—¬Ž©“®’²ß”\‚Í‘‹­‚µCŽ¸_‚Ì—}§‚Éd—v‚È–ðŠ„‚ð‰Ê‚½‚·‚Æl‚¦‚ç‚ꂽB‚æ‚Á‚ÄC”]ŒŒ—¬Ž©“®’²ß”\‚ªŒ¸Žã‚µ‚Ä‚¢‚é‰Â”\«‚Ì‚ ‚éŽÒ‚ɑ΂µ‚ÄŒy“x‰ßd—Í•‰‰×‚ðŽÀŽ{‚·‚éꇂÍCˆã—Êώ@‚Ì•û–@C•‰‰×‹­“x‚╉‰×ŽžŠÔ‚ðTd‚ÉŒŸ“¢‚·‚é•K—v‚ª‚ ‚é‚Æl‚¦‚ç‚ꂽB

—˜‰v‘Š”½
@–{Œ¤‹†‚ÉŠÖ‚µ‚ÄŠJŽ¦‚·‚ׂ«—˜‰v‘Š”½‚Í‚È‚¢B

ŽÓŽ«
@–{Œ¤‹†‚ÍC•¶•”‰ÈŠwȉȌ¤”ïVŠwp—̈æiŒ¤‹†—̈æ’ñˆÄŒ^ju‰F’ˆ‚ɶ‚«‚é@`‰F’ˆ‚©‚ç‚Ђà‰ð‚­V‚½‚ȶ–½§Œä‹@\‚Ì“‡“I—‰ð`v‚̈ꕔ‚Æ‚µ‚ÄC•¶•”‰ÈŠwȉȌ¤”ïJP15H05939‚Ì•¬‚É‚æ‚èŽÀŽ{‚µ‚½B‚±‚Ìê‚ðŽØ‚è‚ÄŽÓˆÓ‚ð•\‚·‚éB

•¶Œ£

1j Burton, R.R.:A human-use centrifuge for space stations: proposed ground-based studies.@Aviat. Space Environ. Med., 59, 579-582, 1988.
2j Claassen, J.A.H.R., Meel-van den Abeelen, A.S.S., Simpson, D.M. and Panerai, R.B.:Transfer function analysis of dynamic cerebral autoregulation:A white paper from the International Cerebral Autoregulation Research Network.@J. Cereb. Blood Flow Metab., 36, 665-680, 2016.
3j Clément, G.:International roadmap for artificial gravity research.@NPJ. microgravity, 3, 29, 2017.
4j Giller, C.A.:The frequency-dependent behavior of cerebral autoregulation.@Neurosurgery, 27, 362-368, 1990.
5j Šâ茫ˆê:•Ï“®‰ðÍiS”CŒŒˆ³C”]ŒŒ—¬jD“ú—Õ–ƒ‰ïŽC28, 889-899, 2008.
6j Iwasaki, K., Levine, B.D., Zhang, R., Zuckerman, J.H., Pawelczyk, J.A., Diedrich, A., Ertl, A.C., Cox, J.F., Cooke, W.H., Giller, C.A., Ray, C.A., Lane, L.D., Buckey, J.C., Baisch, F.J., Eckberg, D.L., Robertson, D., Biaggioni, I. and Blomqvist, C.G.:Human cerebral autoregulation before, during and after spaceflight.@J. Physiol., 579, 799-810, 2007.
7j Iwasaki, K., Ogawa, Y., Aoki, K. and Yanagida, R.:Cerebral circulation during mild +Gz hypergravity by short-arm human centrifuge.@J. Appl. Physiol., 112, 266-271, 2012.
8j Iwasaki, K., Zhang, R., Perhonen, M.A., Zuckerman, J.H. and Levine, B.D.:Reduced baroreflex control of heart period after bed rest is normalized by acute plasma volume restoration.@Am. J. Physiol. Integr. Comp. Physiol., 287, R1256-R1262, 2004.
9j Kanda, Y.:Investigation of the freely available easy-to-use software eEZRf for medical statistics.@Bone Marrow Transplant., 48, 452-458, 2013.
10j Konishi, T., Kurazumi, T., Kato, T., Takko, C., Ogawa, Y. and Iwasaki, K.:Time-dependent changes in cerebral blood flow and arterial pressure during mild +Gz hypergravity. Aerosp. Med. Hum. Perform., 89, 787-791, 2018.
11j Konishi, T., Kurazumi, T., Kato, T., Takko, C., Ogawa, Y. and Iwasaki, K.:Changes in cerebral oxygen saturation and cerebral blood flow velocity under mild +Gz hypergravity.@J. Appl. Physiol., 127, 190-197, 2019.
12j Lassen, N.A.:Cerebral blood flow and oxygen consumption in man. Physiol. Rev., 39, 183-238, 1959.
13j —¢‰F–¾Œ³C‘哇@”Ž:‰F’ˆ‚©‚ç‚Ý‚½ƒŠƒnƒrƒŠƒe[ƒVƒ‡ƒ“ˆãŠwDJpn. J. Rehabil. Med., 46, 753-786, 2009.
14j Pagani, M., Montano, N., Porta, A., Malliani, A., Abboud, F.M., Birkett, C. and Somers, V.K.:Relationship between spectral components of cardiovascular variabilities and direct measures of muscle sympathetic nerve activity in humans.@Circulation, 95, 1441-1448, 1997.
15j Zhang, R., Iwasaki, K., Zuckerman, J.H., Behbehani, K., Crandall, C.G. and Levine, B.D.:Mechanism of blood pressure and R-R variability:Insights from ganglion blockade in humans.@J. Physiol., 543, 337-348, 2002.
16j Zhang, R., Zuckerman, J.H., Giller, C.A. and Levine, B.D.: Transfer function analysis of dynamic cerebral autoregulation in humans.@Am. J. Physiol., 274, H233-241, 1998.
17j Zhang, R., Zuckerman, J.H. and Levine, B.D.:Deterioration of cerebral autoregulation during orthostatic stress: insights from the frequency domain.@J. Appl. Physiol., 85, 1113-1122, 1998.
18j Zuj, K.A., Arbeille, P., Shoemaker, J.K., Blaber, A.P., Greaves, D.K., Xu, D. and Hughson, R.L.:Impaired cerebrovascular autoregulation and reduced CO2 reactivity after long duration spaceflight.@Am. J. Physiol. Hear. Circ. Physiol., 302, H2592-H2598, 2012.