‰F’ˆq‹óŠÂ‹«ˆãŠw Vol. 53, No. 1, 9-15, 2016

Œ´’˜

³íˆ³’áŽ_‘f‚ªdS“®—h‚É‹y‚Ú‚·‰e‹¿

ˆî“c@@^1Cîà“c@–M•v2Ca’[@—T—º3C“¡“c@^Œh2,3C—§‰Ô@³ˆê2

1q‹óŽ©‰q‘àq‹óˆãŠwŽÀŒ±‘à@‘æŽl•”
2–h‰qˆã‰È‘åŠwZ@–h‰qˆãŠwŒ¤‹†ƒZƒ“ƒ^[ˆÙíŠÂ‹«‰q¶Œ¤‹†•”–å
3q‹óŽ©‰q‘àq‹óˆãŠwŽÀŒ±‘à@‘æ“ñ•”

Effects of Normobaric Oxygen on Body Sway

Makoto Inada1, Kunio Takada2, Yusuke Mizohata3, Masanori Fujita2,3, Shoichi Tachibana2

1Fourth Department, Japan Air Self-Defense Force Aeromedical Laboratory
2Division of Environmental Medicine, National Defense Medical College Research Institute
3Second Department, Japan Air Self-Defense Force Aeromedical Laboratory

ABSTRACT
@The purpose of this study was to determine the detailed time course of velocity of body sway ihereafter referred to as gbody swayhj in a normobaric hypoxic environment and to investigate the relationship between body sway and the tissue oxygen index iTOIj of the brain.@Seven healthy males were enrolled as subjects in this study.@A normobaric hypoxic environment was established using a reduced oxygen-breathing device.@Body sway was analyzed by determining the locus length per 10 seconds icm/10sj using a stabilometer.@TOI was measured using an infrared oxygen monitor.@gTOI variationh was calculated according to the following formula: average TOI iat n secondsj/initial TOI iat 1 secondj, every 10 seconds.@Initially, subjects inhaled 20.95% O2 i0 ftj for 10 minutes as the Control environment.@After sufficient rest, they inhaled 8.85% O2 i22,000 ftj for 7 minutes iexposure phasej followed by inhalation of 100% O2 for 3 minutes irecovery phasej as the Experimental environment.@Body sway and TOI were measured in both environments.@During the exposure phase, body sway increased significantly at 210, 250, 280 seconds ip<0.05, respectivelyj and TOI variation decreased significantly from 70 to 300 seconds ip<0.05 to p<0.01j compared with the control.@During the recovery phase, it took 60 seconds for recovery of body sway compared with 40 seconds for recovery of the TOI variation.@There were small correlations between body sway and TOI variation in both the exposure ir=|0.22, p<0.001j and the recovery ir=|0.30, p<0.001j phases.@Additional analyses were performed to adjust for the gtime lagh between body sway and TOI variation based on the above findings.@A negative correlation was observed between body sway at n{140 seconds and TOI variation at n seconds during the exposure phase ir=|0.52, p<0.001j.@Similarly, a negative correlation was observed between body sway at n + 20 seconds and TOI variation at n seconds during the recovery phase ir =|0.50, p<0.001j.@Our results suggest the following; first, hypoxia affects body sway independent of aerial environment such as spatial disorientation, fatigue, or barometric changes;second, there is a possibility that body sway is one of the factors reflected by cerebral oxygenation with a time lag.
@
iReceived:6 August, 2015@Accepted:13 January, 2016j

Key words:normobaric hypoxia, body sway, tissue oxygen index iTOIj

I.@‚Í‚¶‚ß‚É

‘€cŽm“™‚ÍC”òs’†‚É—^ˆ³ƒVƒXƒeƒ€‚ÌŒÌá“™‚É‚æ‚é‹}Œƒ‚È’áŽ_‘f”˜˜I‚ª‹N‚±‚Á‚½ê‡C‚»‚Ìì‹Æ”\—Í“™‚ª’ቺ‚·‚邱‚Æ‚ª’m‚ç‚ê‚Ä‚¢‚é6,8,9jB“Á‚É’†•_ŒoŒnicentral nervous system;CNSj‚ÍÅ‚à’áŽ_‘f‚É‚æ‚é‰e‹¿‚ðŽó‚¯‚â‚·‚­12jC—lX‚È‚“x‚É‚¨‚¯‚é’áŽ_‘f‚Ì‹y‚Ú‚·CNS‹@”\‚ւ̉e‹¿‚ɂ‚¢‚ÄŒ¤‹†‚³‚ê‚Ä‚¢‚é4,7jB‘€cŽm‚Ì”»’f‚ªˆê‚𑈂¤ó‹µ‚ɂ‚Ȃª‚肤‚éq‹ó‹Æ–±‚É‚¨‚¢‚Ä‚ÍC’áŽ_‘f”˜˜I‚É‚æ‚éì‹Æ”\—͒ቺ‚ɂ‚¢‚ÄÚׂɌŸ“¢‚µ‚Ä‚¨‚­‚±‚Æ‚ªC”òsˆÀ‘Sã‚Ì‘Îô‚ðu‚¶‚éã‚Åd—v‚Å‚ ‚éB‚µ‚©‚µ‚È‚ª‚çC‚±‚ê‚Ü‚Å’áŽ_‘fÇ‚Ì’¥Œó‚ÉŠÖ‚·‚錤‹†‚Í‘½‚­¬‚³‚ê‚Ä‚«‚½‚ªC’áŽ_‘f”˜˜I‚©‚ç’áŽ_‘fÇ‚Ì’¥Œó‚ªoŒ»‚·‚é—lŽq‚ðCŒpŽž“I‚©‚¸–§‚ÉŠÏŽ@‚µ‚½Œ¤‹†‚ÍC‰äX‚ª’m‚éŒÀ‚è­‚È‚¢B

‘€cŽm“™‚Ì‹Æ–±‚ɉe‹¿‚ð‹y‚Ú‚·’áŽ_‘fÇ‚Ì’¥Œó‚Ì1‚‚ł ‚édS“®—h‘¬“xiˆÈ‰ºudS“®—hv‚Æ‚·‚éj‚Ì‘‰Á‚ɉäX‚Í’–Ú‚µ‚½Bq‹óŠÂ‹«‚É‚¨‚¯‚édS“®—h‚Ì‘‰Á‚ÌŒ´ˆö‚Æ‚µ‚Ä‹óŠÔŽ¯Ž¸’²C‹Cˆ³•Ï‰»‚É‚æ‚é“àŽ¨‹@”\‚̒ቺC’áŽ_‘fÇ“™‚ª’m‚ç‚ê‚Ä‚¢‚邪2,8,9,13jC’áŽ_‘fÇ‚»‚Ì‚à‚Ì‚ªdS“®—h‚É‚Ç‚Ì’ö“x‰e‹¿‚ð‹y‚Ú‚·‚©‚ðCŒpŽž“I‚ÉŒv‘ª‚·‚錤‹†‚Í‚±‚ê‚Ü‚Ås‚í‚ê‚Ä‚¢‚È‚¢B¡‰ñC’áŽ_‘fÇ‚Ìis‚©‚ç‰ñ•œ‚ÉŽŠ‚錤‹†ƒ‚ƒfƒ‹‚ð쬂µCŒoŽž“I‚ÈŒo‰ß‚ªdS“®—h‚É‚Ç‚Ì’ö“x‚̉e‹¿‚ð—^‚¦‚é‚©ŒŸ“¢‚ðs‚Á‚½B

‚Ü‚½C’áŽ_‘fó‘Ô‚ªdS“®—h‚ɉe‹¿‚ð—^‚¦‚é”wŒi‚Æ‚µ‚ÄCNS‚Ì‹@”\’ቺ‚ðl‚¦CdS“®—h‚Æ”]“àŽ_‘f‰»Žw•Witissue oxygen index, TOIj‚ÌŠÖŒW‚ɂ‚¢‚Ä‚àŒŸ“¢‚µ‚½B

II.@•û–@

A.@”팱ŽÒ

”팱ŽÒ‚ÍC“à•ž’†‚Ì–òÜCdS“®—h‚ɉe‹¿‚É‹y‚Ú‚·‚悤‚ÈŠù‰—ðC‚¨‚æ‚ÑŠ‘®‹@ŠÖ‚É‚¨‚¯‚é’èŠúŒ’Nf’f‚ňÙ킪”F‚ß‚ç‚ê‚È‚¢CŒ’í‚Ȭl’j«7–¼i”N—î: 29.0±8.6ÎCg’·:170.3±7.2 cmC‘Ìd: 62.7±6.5 kgj‚Æ‚µ‚½B

B.@‘ª’è•û–@

Ý’è‚·‚é’áŽ_‘fŠÂ‹«‚ÍCŒ¸Ž_‘f‹z“ü‘•’uiReduced Oxygen Breathing Device 2®, Environics Inc.j‚É‚æ‚è쬂µ‚½BŒ¸Ž_‘f‹z“ü‘•’u‚Í‹ó‹C‚Æ’‚‘f‚𬇂³‚¹‚邱‚Æ‚ÅC‚»‚ꂼ‚ê‚Ì‚“xŠÂ‹«‚É‘Š“–‚·‚éŽ_‘f•ªˆ³ƒKƒX‚𶬂·‚é‘•’u‚ÅCƒ}ƒXƒN‚ð’Ê‚µ‚Ĕ팱ŽÒ‚ɶ¬ƒKƒX‚ð‹Ÿ‹‹‚·‚邱‚Æ‚É‚æ‚èC¸–§‚É’áŽ_‘f‚É”˜˜I‚³‚¹‚邱‚Æ‚ª‚Å‚«‚éiFig. 1iajjB

Fig. 1.@Reduced Oxygen Breathing Device iaj and the experimental scene ibj.

dS“®—hibody swayj‚ÍdS“®—hŒviGRAVICORDER5500®CƒAƒjƒ}Š”Ž®‰ïŽÐj‚ð—p‚¢‚ÄC10•b‚ ‚½‚è‚ÌdSˆÚ“®‹——£icm/10 sj‚𑪒肵‚½B”팱ŽÒ‚É‚ÍCŽè‡‘11j‚É€‚¶C‡@ ƒwƒ‹ƒƒbƒg‚ƃ}ƒXƒN‚ð‘•’…C‡A Šá‚Ì‚‚³‚Éݒ肵‚½Žw•W‚ð’Ž‹C‡B •Â‘«—§‚¿C‡C Šy‚ÈŽp¨C‚Ìó‘Ô‚ÅdS“®—hŒv‚Ìã‚É’¼—§‚³‚¹C‘ª’èŒë·‚𶂶‚ʂ悤C‡D ˆÓ“I‚ÈŽp¨‚Ì‹¸³C‡E ‘«‚Ì“¥‚Ý‘Ö‚¦C‚Ís‚í‚È‚¢‚悤‚ÉŽwŽ¦‚µ‚½iFig. 1ibjjB

”]“àŽ_‘f‰»Žw•Witissue oxygen index, TOIj‚ÍÔŠOüŽ_‘fƒ‚ƒjƒ^iNIRO-200®C•l¼ƒzƒgƒjƒNƒXŽÐj‚ð—p‚¢‚ÄC‹ßÔŠOü•ªŒõ–@inear-infrared spectroscopy, NIRSj‚É‚æ‚葪’肵‚½B‘ª’è•”ˆÊ‚Ͷ‘OŠz•”‚Æ‚µ‚½B‚Ü‚½Cƒvƒ[ƒuŠÔ‚Ì‹——£‚ð30 mm‚É‚·‚邱‚Æ‚ÅC“ª”ç‚©‚ç–ñ20 mm‚Ì[•”‚Ü‚Å‚ð•]‰¿‚µ‚½BŒÂl‚É‚æ‚Á‚ăx[ƒXƒ‰ƒCƒ“‚ªˆÙ‚Ȃ邽‚ßCŽÀŒ±ŠJŽnŒãn•bŽž‚É‚¨‚¯‚éuTOI”äv‚ðgTOIin•bj/TOIi1•bjh‚ÌŠ·ŽZŽ®‚ÅŽZo‚µCTOI”ä‚Ì10•b‚²‚Æ‚Ì•½‹Ï‚ðTOI•Ï‰»—¦iTOI variationj‚Æ’è‹`‚µ‚ĉðÍ‚É—p‚¢‚½B

ŽÀŒ±ŠT—v‚ðFig. 2‚ÉŽ¦‚µ‚½Bʼn‚ɃRƒ“ƒgƒ[ƒ‹ŠÂ‹«icontrol environmentj‚Å‘ª’è‚ðŽÀŽ{‚µC‘ª’茋‰Ê‚ɉe‹¿‚ªŒ»‚ê‚È‚¢‚悤\•ª‚É‹xŒe‚³‚¹‚½ŒãCŽÀŒ±ŠÂ‹«iexperiment environmentj‚Å‘ª’肵‚½BŠeŠÂ‹«‚ÌŠT—v‚ɂ‚¢‚Ă͈ȉº‚ÉŽ¦‚·B

1.@ƒRƒ“ƒgƒ[ƒ‹ŠÂ‹«
0 Ft‘Š“–i20.95%Ž_‘fj‚̃KƒX‚ð10•ªŠÔ‹z“ü‚³‚¹‚éB
2.@ŽÀŒ±ŠÂ‹«
22,000 Ft‘Š“–i8.85%Ž_‘fj‚̃KƒX‚ð7•ªŠÔ‹z“ü‚³‚¹i”˜˜IƒtƒF[ƒY:exposure phasejC‘±‚¢‚Ä100%Ž_‘f‚ð3•ªŠÔ‹z“ü‚³‚¹i‰ñ•œƒtƒF[ƒY:recovery phasejC‡Œv10•ªŠÔ‹z“ü‚³‚¹‚éB

Fig. 2. Outline of the experiment.
 Initially, subjects inhaled 20.95% O2 i0 ftj for 10 minutes icontrol environmentj.@After sufficient rest, they inhaled 8.85% O2 i22,000 ftj for 7 minutes iexposure phasej and subsequently inhaled 100% O2 for 3 minutes iRecovery phasej iexperiment environmentj.@Body sway and TOI were measured during each of the experimental conditions.

@C.@“Œv‰ðÍ

Œ‹‰Ê‚Í•½‹Ï’l±•W€•Î·‚ÅŽ¦‚µ‚½BTOI•Ï‰»—¦‚ÆdS“®—h‚Ì‘ŠŠÖŒW”‚ÍPearson correlation coefficient‚Å‹‚ßC–³‘ŠŠÖŒŸ’è‚ðs‚Á‚½C—LˆÓ…€‚Í5%–¢–ž‚Æ‚µ‚½B

@D.@—Ï—‚¨‚æ‚шÀ‘S«‚Ö‚Ì”z—¶

–{Œ¤‹†‚ÍCŠ‘®‹@ŠÖ‚Ì—Ï—R¸ˆÏˆõ‰ï‚̳”F‚ðŽó‚¯‚Ä‚¨‚èC‚·‚ׂĂ̔팱ŽÒ‚É‚ÍC–{ŽÀŒ±‚Ì–Ú“IC•û–@C‚»‚ê‚É”º‚¤ŠëŒ¯«‚Ȃǂɂ‚¢‚ÄC•¶‘‚¨‚æ‚ÑŒû“ª‚Åà–¾‚ðs‚¢CŽÀŒ±‚Ö‚ÌŽQ‰Á‚É“¯ˆÓ‚𓾂½ã‚Ås‚Á‚½B

‘ª’è’†‚͈ãŽt‚É‚æ‚éŠÄŽ‹‚¨‚æ‚Ñ•â•ŽÒ‚É‚æ‚é“]“|–hŽ~‚ðs‚¢C”팱ŽÒ‚ɂ̓wƒ‹ƒƒbƒg‚ð‘•’…‚³‚¹‚½B‚Ü‚½CŒ¸Ž_‘f‹z“ü‘•’u‚É•t‘®‚µ‚Ä‚¢‚é“®–¬ŒŒŽ_‘f–O˜a“x‚ª60%‚ð‰º‰ñ‚éê‡C‚à‚µ‚­‚͉º‰ñ‚邱‚Æ‚ª—\‘z‚³‚ꂽꇂÍC‚»‚ÌŽž“_‚ʼnñ•œƒtƒF[ƒY‚ւƈÚs‚³‚¹‚½B

Fig. 3. Body sway and TOI variation during the exposure and recovery phases.
 Body sway was analyzed by determining the locus length per 10 seconds icm/10 sj using a stabilometer.@TOI was measured using an infrared oxygen monitor.@gTOI variationh was calculated by the average TOI iat n secondsj/initial TOI iat 1 secondj every 10 seconds.



Fig. 4. Correlation between body sway and TOI variation during the exposure phase.
 Based upon data available from 5 subjects who completed the exposure phase i300 secondsj.

Fig. 5. Correlation between body sway and TOI variation during the recovery phase.
 Based upon data available from 5 subjects who completed the recovery phase i180 secondsj.

III.@Œ‹‰Ê

ƒRƒ“ƒgƒ[ƒ‹ŠÂ‹«‚¨‚æ‚ÑŽÀŒ±ŠÂ‹«‚É‚¨‚¯‚édS“®—h‚¨‚æ‚ÑTOI•Ï‰»—¦‚ðFig. 3‚ÉŽ¦‚µ‚½B’áŽ_‘f”˜˜I‚Í“–‰7•ªŠÔ‚ðŒv‰æ‚µ‚½‚ªC5•ªŒo‰ßŒã‚ɉñ•œƒtƒF[ƒY‚ɈÚs‚³‚¹‚´‚é‚𓾂Ȃ©‚Á‚½ƒP[ƒX‚à‚ ‚Á‚½‚½‚ßC”˜˜IƒtƒF[ƒY‚̉ð͂̓f[ƒ^‚ª‘µ‚Á‚Ä‚¢‚é5•ª‚Ü‚Å‚Æ‚µ‚½B‚Ü‚½CdS“®—h‚Í7–¼‘Sˆõ‚ð‰ðÍ‘ÎÛ‚Æ‚µ‚½‚ªCTOI•Ï‰»—¦‚Í‹@ŠBƒgƒ‰ƒuƒ‹‚É‚æ‚è2–¼‚Ì‘ª’肪s‚¦‚È‚©‚Á‚½‚½‚ßC5–¼‚ð‰ðÍ‘ÎÛ‚Æ‚µ‚½B

”˜˜IƒtƒF[ƒY‚É‚¨‚¢‚ÄCŽÀŒ±ŠÂ‹«‚̓Rƒ“ƒgƒ[ƒ‹ŠÂ‹«‚Æ”ä‚×CdS“®—h‚Í210•bC250•bC280•b‚Å—LˆÓ‚É㸂µCTOI•Ï‰»—¦‚Í70•b‚©‚ç300•b‚Ü‚Å—LˆÓ‚ɒቺ‚µ‚½iFig. 3jB

‰ñ•œƒtƒF[ƒY‚É‚¨‚¢‚ÄCŽÀŒ±ŠÂ‹«‚̓Rƒ“ƒgƒ[ƒ‹ŠÂ‹«‚Æ”ä‚×CdS“®—h‚Í60•bŒã‚É—LˆÓ‚È㸂ª–³‚­‚È‚èCTOI•Ï‰»—¦‚Í40•bŒã‚É—LˆÓ‚Ȓቺ‚ª–³‚­‚È‚Á‚½iFig. 3jB

”˜˜IƒtƒF[ƒY‚É‚¨‚¢‚ÄCdS“®—h‚ðcŽ²CTOI•Ï‰»—¦‚ð‰¡Ž²C‚Æ‚µƒvƒƒbƒg‚µ‚½ŽU•z}‚ðFig. 4‚ÉŽ¦‚µ‚½BdS“®—h‚ÆTOI•Ï‰»—¦‚É‘ŠŠÖ‚Í‚Ù‚Æ‚ñ‚Ç”F‚ß‚È‚©‚Á‚½ir=|0.22, p<0.001jB

“¯—l‚ɉñ•œƒtƒF[ƒY‚É‚¨‚¢‚Ä‚àCdS“®—h‚ÆTOI•Ï‰»—¦‚É‘ŠŠÖ‚Í‚Ù‚Æ‚ñ‚Ç”F‚ß‚È‚©‚Á‚½iFig. 5;r=|0.30, p<0.001jB

ŽÀŒ±ŠÂ‹«‚ƃRƒ“ƒgƒ[ƒ‹ŠÂ‹«‚É‚¨‚¯‚édS“®—h‚ÆTOI•Ï‰»—¦‚Å—LˆÓ·‚ª¶‚¶‚鎞ŠÔ·‚¨‚æ‚Ñ—LˆÓ·‚ª–³‚­‚Ȃ鎞ŠÔ·‚ÍC”˜˜IƒtƒF[ƒY‚Å140•bi210•b‚Æ70•bjC‰ñ•œƒtƒF[ƒY‚Å20•bi60•b‚Æ40•bj‚Å‚ ‚Á‚½iFig. 3jB‚»‚±‚ÅCdS“®—h‚ÍTOI•Ï‰»—¦‚É”ä‚ׂĒx‚ê‚ĕω»‚µ‚Ä‚¢‚é‰Â”\«‚ðl—¶‚µ‚ÄX‚Ȃ镪͂ðs‚Á‚½B

”˜˜IƒtƒF[ƒY‚É‚¨‚¢‚ÄCn{140•bin‚Í10‚Ì”{”CˆÈ‰º“¯—ljŽž“_‚ÌdS“®—hi150•b`300•bj‚Æn•bŽž“_‚ÌTOI•Ï‰»—¦i10•b`160•bj‚ÌŠÖŒW‚𒲂ׂ½Bn+140•b‚ÌdS“®—h‚ðcŽ²Cn•b‚ÌTOI•Ï‰»—¦‚ð‰¡Ž²‚Æ‚µƒvƒƒbƒg‚µ‚½ŽU•z}‚ðFig. 6‚ÉŽ¦‚µ‚½Bn{140•bŽž“_‚ÌdS“®—h‚Æn•bŽž“_‚ÌTOI•Ï‰»—¦‚É‚Í•‰‚Ì‘ŠŠÖ‚ð”F‚ß‚½ir =|0.52, p<0.001jB

“¯—l‚ɉñ•œƒtƒF[ƒY‚É‚¨‚¢‚ÄCn{20•bŽž“_‚ÌdS“®—hi30•b`180•bj‚Æn•bŽž“_‚ÌTOI•Ï‰»—¦i10•b`160•bj‚É‚Í•‰‚Ì‘ŠŠÖ‚ð”F‚ß‚½iFig. 7;r =|0.50, p<0.001jB

Fig. 6. Correlation after adjustment for the time lag between body sway and TOI variation during the exposure phase.
 Based upon available data for body sway at n+140 i150 to 300j seconds and TOI variation at n i10 to 180j seconds from 5 subjects who completed the exposure phase i300 secondsj.


Fig. 7. Correlation after adjustment for the time lag between body sway and TOI variation during the recovery phase.
 Based upon available data for body sway at n + 20 i30 to 180j seconds and TOI variation at n i10 to 160j seconds from 5 subjects who completed the recovery phase i180 secondsj.

IV.@lŽ@

¡‰ñ‚ÌŒ¤‹†‚É‚¨‚¢‚ÄC’áŽ_‘f‚É”˜˜I‚·‚é‚ÆdS“®—hidS“®—h‘¬“xj‚ª‘‰Á‚µC’áŽ_‘f‚©‚ç—£’E‚·‚ê‚ÎdS“®—h‚ª‰ñ•œ‚·‚é‚Æ‚¢‚¤Œ‹‰Ê‚ª“¾‚ç‚ꂽB“–Œ¤‹†‚ÍC•—Œi‚âd—͉Á‘¬“x‚̕ω»‚Í‚È‚¢‚½‚ß‹óŠÔŽ¯Ž¸’²‚̉e‹¿‚Íl‚¦‚É‚­‚¢B‚Ü‚½C”æ˜J‚ª‘å‚«‚­‰e‹¿‚·‚é‚Ì‚Å‚ ‚ê‚Î’áŽ_‘fŠÂ‹«‚©‚ç‚Ì—£’E‚ʼnñ•œ‚Í”F‚ß‚ç‚ê‚È‚¢‚½‚ßC”æ˜J‚̉e‹¿‚ª‘å‚«‚­‚È‚¢‚Æl‚¦‚ç‚ê‚éB‚³‚ç‚ÉC³íˆ³‚ÅŽÀŽ{‚³‚ê‚Ä‚¢‚邱‚Æ‚©‚çC‹Cˆ³•Ï‰»‚̉e‹¿‚Í‚È‚¢B‚»‚êŒÌC‹óŠÔŽ¯Ž¸’²C”æ˜JC‹Cˆ³•Ï‰»“™‚Ìq‹óŠÂ‹«‚É‚¨‚¢‚Äg‘̂ɉe‹¿‚ð—^‚¦‚éˆöŽq‚Æ‚Í–³ŠÖŒW‚É’áŽ_‘f”˜˜I‚»‚Ì‚à‚Ì‚ªdS“®—h‚ɉe‹¿‚µ‚Ä‚¢‚邱‚Æ‚ªŽ¦´‚³‚ꂽB

‰äX‚ªCŒpŽž“I‚È’áŽ_‘fÇ‚Ìis‚ÉŠÖ‚·‚é•]‰¿€–Ú‚Æ‚µ‚ÄdS“®—h‚ðÌ—p‚µ‚½——R‚͈ȉº‚Ì’Ê‚è‚Å‚ ‚éB

‡@@ŒvŽZ“™‚ð—˜—p‚µ‚½•]‰¿‚͔팱ŽÒ‚Ì‚â‚é‹C‚âŒoŒ±‚É‚æ‚é‰e‹¿‚ªŒœ”O‚³‚ê‚éB

‡A@dS“®—h‚Í“]“|‚ð‹N‚±‚µ‚½‚­‚È‚¢‚Æ‚¢‚¤Œ´Žn“I”½‰ž‚Å‚ ‚邱‚Æ‚©‚ç‚â‚é‹C‚âŒoŒ±‚É‚æ‚é‰e‹¿‚ª­‚È‚¢B

‚Ü‚½C•ÂŠá‚Å‚ ‚ê‚ÎŽ‹Šoî•ñ‚ªŽÕ’f‚³‚ê‚邱‚Æ‚ÅŠJŠá‚æ‚è‚àdS“®—h‚ð³Šm‚É‘ª’è‚Å‚«‚邱‚Æ‚ª—\‘z‚³‚ê‚é‚Ì‚É‚à‚©‚©‚í‚炸C‰äX‚ª‚ ‚¦‚ÄŠJŠá‚Å‘ª’肵‚½——R‚͈ȉº‚Ì’Ê‚è‚Å‚ ‚éB

‡@@22,000 Ft‘Š“–i8.85%Ž_‘fj‚̊‹«‰º‚ŕŠá‚É‚¨‚¯‚é—§ˆÊ‚̈ێ‚ª¢“ï‚Å‚ ‚èˆÀ‘S«‚ªŒœ”O‚³‚ê‚éB

‡A@‘€cŽm‚É‹N‚±‚肤‚é’áŽ_‘f”˜˜I‚Í’ÊíŠJŠáó‘Ô‚Å‚ ‚éB

–{Œ¤‹†‚͔팱ŽÒ‚ª­”‚©‚‹@Ší‚Ì“s‡‚à‚ ‚èC¡‰ñ‚ÍdS“®—h‘¬“xˆÈŠO‚ÌŽw•WidS“®—hŠOŽü–ÊÏC¶‰EŒaC‘OŒãŒa“™j‚ÌŒŸ“¢‚âƒNƒƒXƒI[ƒo[‚É‚æ‚錟“¢‚ÍŽÀŽ{‚µ‚È‚©‚Á‚½B‚»‚êŒÌCdS“®—h‚Ì‘ª’è‚ÍC’áŽ_‘f”˜˜I‚©‚ç’áŽ_‘fÇ‚ÌÇó‚ªoŒ»‚·‚é—lŽq‚𑨂¦‚邽‚ß‚Ì—\”õ“IŒ¤‹†‚Æ‚¢‚¤ˆÊ’u‚¯‚Æ‚È‚Á‚Ä‚¢‚éB

’áŽ_‘f‚É”˜˜I‚·‚é‚Æ‚È‚ºdS“®—h‚ª‘‰Á‚·‚é‚Ì‚©‚Í–¾‚ç‚©‚Å‚Í‚È‚¢B‚½‚¾‚µCCNS‚ÍÅ‚à’áŽ_‘f‚̉e‹¿‚ðŽó‚¯‚â‚·‚­8,12jC‚Ü‚½C‘O’ë_ŒoŠj‚Í’áŽ_‘f‚ɑ΂µ‚ÄŠ´Žó«‚ª‚‚¢5j‚È‚Ç‚Ì•ñ‚ª‚ ‚éB‚»‚êŒÌC‰äX‚ÍTOI‚̕ω»‚ªdS“®—h‚É”½‰f‚µ‚Ä‚¢‚é—lŽq‚ðŠÏŽ@‚·‚邱‚Æ‚É‚æ‚èCdS“®—h‘‰Á‚ÌŒ´ˆö‚Í”]‚ÌŽ_‘f•s‘«‚É‚æ‚éCNS‚Ì‹@”\’ቺ‚Å‚ ‚邱‚Æ‚ðŠm”F‚µ‚½‚¢‚Æl‚¦‚½‚ªC–{ŽÀŒ±‚É‚¨‚¢‚Ä‚Í”˜˜IƒtƒF[ƒYE‰ñ•œƒtƒF[ƒY‹¤‚ÉCTOI•Ï‰»—¦‚ÆdS“®—h‚É–¾‚ç‚©‚È‘ŠŠÖ‚Í”F‚ß‚È‚©‚Á‚½iFig. 4, r=|0.22, p<0.001; Fig. 5, r=|0.30, p<0.001jB‚»‚±‚ÅCTOI•Ï‰»—¦‚ÆdS“®—h‚É‘ŠŠÖ‚ð”F‚ß‚È‚¢——R‚Æ‚µ‚ÄTOI•Ï‰»‚ÆdS“®—h•Ï‰»‚ÉuŽžŠÔ·v‚ª‚ ‚é‚Æl‚¦‚½B

Fig. 3‚Ì”˜˜IƒtƒF[ƒY‚É‚¨‚¯‚éCdS“®—h‚Ì—LˆÓ‚ȕω»‚ÍCTOI•Ï‰»—¦‚Ì—LˆÓ‚ȕω»‚Æ”ä‚ׂÄC140•b‚Ì’x‚ꂪ¶‚¶‚Ä‚¢‚éBTOI•Ï‰»—¦‚Í”˜˜IŒã70•b‚©‚ç’ቺ‚µŽn‚ß‚Ä‚¢‚邪CdS“®—h‚Í210•b‚܂ł͕ω»‚ª–³‚­C‚»‚̌㑉Á‚ðŽn‚ß‚Ä‚¢‚éB‚»‚±‚Å140•b‚ÌŽžŠÔ·‚ðl—¶‚µ‚ĉðÍ‚·‚é‚ÆC•‰‚Ì‘ŠŠÖ‚ð”F‚ß‚½iFig. 6; r=|0.52, p<0.001jB‚±‚ê‚ÍTOI‚ª’ቺ‚µ‚Ä‚¢‚é‚Ì‚ÉŠÖ‚í‚炸dS“®—h‚Í‘‰Á‚µ‚Ä‚¢‚È‚¢ó‘Ô‚ð•â³‚Å‚«‚½‚±‚Æ‚É‚æ‚é‚Æl‚¦‚ç‚ê‚éB

“¯—l‚ÉFig. 3‚̉ñ•œƒtƒF[ƒY‚É‚¨‚¢‚ÄCdS“®—h‚Ì—LˆÓ‚ȕω»‚©‚ç‚̉ñ•œ‚ÍCTOI•Ï‰»—¦‚Ì—LˆÓ‚ȕω»‚̉ñ•œ‚Æ”ä‚ׂÄC20•b‚Ì’x‚ꂪ¶‚¶‚Ä‚¢‚éBTOI•Ï‰»—¦‚ÍŽ_‘f‹z“ü10•bŒã‚©‚ç‰ñ•œ‚µŽn‚ß‚Ä‚¢‚邪CdS“®—h‚Í30•b‚Ü‚Å‚Í‘‰Á‚µC‚»‚ÌŒã‰ñ•œ‚ðŽn‚ß‚Ä‚¢‚éB‚·‚È‚í‚¿CdS“®—h‚ÍTOI•Ï‰»—¦‚©‚ç20•b’x‚ê‚ĕω»‚µ‚Ä‚¢‚éB‚»‚±‚Å20•b‚ÌŽžŠÔ·‚ðl—¶‚µ‚ĉðÍ‚·‚é‚ÆC•‰‚Ì‘ŠŠÖ‚ð”F‚ß‚½iFig. 7; r=|0.50, p<0.001jB‚±‚ê‚ÍŽ_‘f‹z“ü’¼Œã‚É‚¨‚¢‚ÄTOI‚ª‰ñ•œ‚·‚é‚̂ɂ‚ê‚ÄdS“®—h‚à‘‰Á‚µ‚Ä‚¢‚éó‘Ô‚ð•â³‚Å‚«‚½‚±‚Æ‚É‚æ‚é‚Æl‚¦‚ç‚ê‚éB‚Ü‚½‰ñ•œƒtƒF[ƒY‚É‚¨‚¢‚ĉŠú‚ÉdS“®—h‚ª‘‰Á‚µ‚Ä‚¢‚邪C‚±‚ÌŒ´ˆö‚Í’áŽ_‘f”˜˜IŒã‚É‚”Z“xŽ_‘f‚ð‹z“ü‚·‚é‚ƈꎞ“I‚É’áŽ_‘fÇ‚ÌÇ󂪈«‰»‚·‚é‚Æ‚¢‚¤oxygen paradox‚ªŠÖŒW‚µ‚Ä‚¢‚é‚©‚à‚µ‚ê‚È‚¢1jBˆÈã‚æ‚èCdS“®—h‚Í”]‚ÌŽ_‘f‰»ó‘Ô‚ðŽžŠÔ·‚Å”½‰f‚µ‚Ä‚¢‚é‰Â”\«‚ªŽ¦´‚³‚ꂽB

‚±‚ê‚Ü‚Å‚É’áŽ_‘fÇ‚É‚æ‚éCNS‚Ì‹@”\’ቺ‚ɂ‚¢‚ÄC‘½‚­‚ÌŒ¤‹†‚ª‚È‚³‚ê‚Ä‚«‚½8,12jB‚µ‚©‚µC’áŽ_‘f”˜˜I‚©‚ç’áŽ_‘fÇ‚ÌÇó‚ªoŒ»‚·‚é—lŽq‚ðCŒpŽž“I‚©‚¸–§‚ÉŠÏŽ@‚µ‚½Œ¤‹†‚͉äX‚ª’m‚éŒÀ‚è­‚È‚­C10•b–ˆ‚̂悤‚È’ZŽžŠÔ–ˆ‚̕ω»‚ðŽ¦‚µ‚½‚à‚Ì‚ÍŠm”F‚Å‚«‚È‚©‚Á‚½B–{ŽÀŒ±‚Í”]‚ªŽ_‘f•s‘«‚ɊׂÁ‚Ä‚©‚ç‹@”\’ቺ‚𶂶‚é‚Ü‚Å‚ÉŽžŠÔ·‚ª‚ ‚邱‚Æ‚ðŽ¦´‚·‚邪C‚»‚Ì——R‚ðŽ¦‚µ‚½•¶Œ£‚ÍŒ©‚‚¯‚邱‚Æ‚ª‚Å‚«‚È‚©‚Á‚½BNIRS‚É‚æ‚éTOI‘ª’è‚Å‚ÍC•K‚¸‚µ‚à”]‘gD‚ÌŽ_‘f‰»ó‘Ԃ𑪒肵‚Ä‚¢‚é‚킯‚Å‚Í‚È‚­C”畆‚⌌ŠÇ‚ÌŽ_‘f‰»ó‘Ô‚ðŠÜ‚ß‚Ä‘‡“I‚É‘ª’肵‚Ä‚¢‚邽‚ßC–{ŽÀŒ±‚É‚¨‚¢‚Ä‚Í”]‚ÌŽ_‘f•s‘«‚ÉŠÖ‚µ‚ÄŒµ–§‚È‹c˜_‚Í‚Å‚«‚È‚¢B‚Ü‚½C‰¼‚É–{ŽÀŒ±‚É‚¨‚¯‚éTOI‚ª”]‘gD‚ÌŽ_‘f‰»ó‘Ô‚ð•\‚µ‚Ä‚¢‚é‚Æ‚µ‚Ä‚àC–{ŽÀŒ±‚Í‘OŠz•”‚Å‘ª’肵‚Ä‚¨‚èCŽp¨•ÛŽ‚ðŽi‚é‚Æl‚¦‚ç‚ê‚é‘O’ë_ŒoŠj‚âŠî’êŠj‚Å‚ÌŽ_‘f‰»ó‘Ԃ𔽉f‚µ‚Ä‚¢‚é‚Æ‚ÍŒ¾‚¦‚È‚¢B‚±‚Ìê‡C–{ŽÀŒ±‚ÅŠÏŽ@‚³‚ꂽuŽžŠÔ·v‚Íu”]‚Ì•”ˆÊ‚É‚æ‚éŽ_‘f‰»ó‘Ô‚ÌŽžŠÔ·v‚ðŠÏŽ@‚µ‚½‰Â”\«‚ª‚ ‚éB‚Ü‚½CŽp¨•ÛŽ‚Í”F’m“I‚ȈӉ^“®C”]Š²-Ò‘‚É‚¨‚¯‚éŽp¨”½ŽËC‹Ø‹Ù’£“™‚ªŠÖŒW‚·‚é•¡ŽG‚È‹@\‚Å‚ ‚邽‚ß10jC”]‚ÌŽ_‘f‰»ó‘ԈȊO‚ÉCdS“®—h‚ɉe‹¿‚ð‹y‚Ú‚·—vˆö‚ª‚ ‚é‰Â”\«‚͔ےè‚Å‚«‚È‚¢B

¡‰ñ‚ÌŒ¤‹†‚ÍC’áŽ_‘f”˜˜I‚©‚ç’áŽ_‘fÇ‚ÌÇó‚ÌoŒ»‚·‚é—lŽq‚𑨂¦‚é—\”õ“IŒ¤‹†‚̈ʒu‚¯‚Å‚ ‚邪C‘€cŽm‚É‘z’肳‚ê‚é’ZŽžŠÔ–ˆ‚Æ‚¢‚¤Úׂȕω»‚𑨂¦‚½Œ¤‹†‚ÍŠm”F‚Å‚«‚¸C¡Œã‚ÌÚׂȌ¤‹†‚ÌŠî‘bŽ‘—¿‚Æ‚µ‚Ä—L—p‚Å‚ ‚é‚Æl‚¦‚ç‚ê‚éB

V.@‚Ü‚Æ‚ß

’áŽ_‘f”˜˜I‚©‚ç’áŽ_‘fÇ‚ÌÇó‚ªoŒ»‚·‚é—lŽq‚ðŒpŽž“I‚©‚¸–§‚ÉŠÏŽ@‚·‚錤‹†‚ðŽÀŽ{‚µ‚½B0 Ft‘Š“–i20.95%Ž_‘fj‚̊‹«‚Æ”ä‚×C22,000 Ft‘Š“–i8.85%Ž_‘fj‚̊‹«i”˜˜IƒtƒF[ƒYj‚É‚¨‚¯‚édS“®—h‚Ì—LˆÓ‚ȕω»‚Í210•bŒãCTOI•Ï‰»—¦‚Í70•bŒã‚©‚ç”F‚ß‚ç‚ꂽB”˜˜IƒtƒF[ƒY‚É‘±‚¢‚½100%Ž_‘fŠÂ‹«i‰ñ•œƒtƒF[ƒYj‚Å‚ÍCdS“®—h‚Í60•bŒãCTOI•Ï‰»—¦‚Í40•bŒã‚É—LˆÓ‚Ȓቺ‚ª–³‚­‚È‚Á‚½B

dS“®—h‚ÆTOI•Ï‰»—¦‚É‘ŠŠÖ‚Í‚Ù‚Æ‚ñ‚Ç”F‚ß‚È‚©‚Á‚½‚ªCŽžŠÔ·i”˜˜IƒtƒF[ƒY:140•bC‰ñ•œƒtƒF[ƒY:20•bj‚ðl—¶‚µ‚ĉðÍ‚·‚é‚Æ—¼ƒtƒF[ƒY‹¤‚ÉdS“®—h‚ÆTOI•Ï‰»—¦‚É•‰‚Ì‘ŠŠÖ‚ð”F‚ß‚½B

ˆÈã‚ÌŒ‹‰Ê‚©‚çCˆÈ‰º‚Ì“à—e‚ªŽ¦´‚³‚ꂽB

‡@@‹óŠÔŽ¯Ž¸’²C”æ˜JC‹Cˆ³•Ï‰»“™‚Ìq‹óŠÂ‹«‚É‚¨‚¢‚Äg‘̂ɉe‹¿‚ð—^‚¦‚éˆöŽq‚Æ‚Í–³ŠÖŒW‚É’áŽ_‘f‚»‚Ì‚à‚Ì‚ªdS“®—h‚ɉe‹¿‚ð‹y‚Ú‚µ‚Ä‚¢‚éB

‡A@”]‚ÌŽ_‘f‰»‚ÍdS“®—h‚̕ω»‚ðŽžŠÔ·‚Å”½‰f‚³‚¹‚é—vˆö‚̂ЂƂ‚ł ‚é‰Â”\«‚ª‚ ‚éB

•¶@@@Œ£

1j Chumbley, E.:the oxygen paradox and ROBD.@Flightlines, 27, 5, 2014.

2j Cymerman, A., Muza, S.R., Beidleman, B.A., Ditzler, D.T. and Fulco, C.S.:Postural Instability and Acute Mountain Sickness During Esposure to 24 Hours of Simulated Altitude i4,300 mj.@High Alt. Med. Biol., 2, 509-514, 2001.

3j Degache, F., Larghi, G., Faiss, R., Deriaz, O. and Millet, G.: Hypobaric versus Normobaric Hypoxia:Same Effects on Postural Stability ?@High Alt. Med. Biol., 13, 40-45, 2012.

4j Denison, D.M., Ledwith, F. and Poulton, E.C.:Complex reaction times at simulated cabin altitudes of 5,000 feet and 8,000 feet.@Aerosp. Med., 37, 1010-1013, 1966.

5j Gellhorn, E.:Sensitivity of the Auditory Projection Area to Anoxia.@Am. J. Physiol., 164, 748-751, 1951.

6j Guyton, A.C. and Hall, J.E.:Aviation, High altitude, and Space Physiology.@In:Medical Physiology 11th Ed., Elsevier Saunders, Pennsylvania, pp. 537-541, 2006.

7j Jan, S., Cocco, D., Pradhan, G.N., Smith, B.E., Bartlett, J., Studer, M., Kuhn, F. and Cevette, M.J.:Early Detection of Hypoxia-Induced Cognitive Impairment Using the King-Devick Test.@Aviat. Space and Environ. Med., 84, 1017-1022, 2013.

8j Jeb, S.P., and David, P.G.:Respiratory Physiology and Protection Against Hypoxia.@In:fundamentals of aerospace medicine 4th Ed., Eds. by Jeffrey, R.D., Robert, J., Jan, S., and Jennifer, A.F.@Lippincott & Wilkins, USA, pp. 20-35, 2008.

9j ’†‘º²’jC–î‘q¬K:q‹óŠÂ‹«D—Õ°q‹óˆãŠwCã“c@‘׊ÄD–P–“°‘“XC“Œ‹žCpp. 17-29, 1995.

10j ‚‘–ØŒO:‘å”]Šî’êŠj‚É‚æ‚é‰^“®‚̧ŒäC—Õ°_ŒoC49, 325-334, 2009.

11j Žž“c@‹ª:dS“®—hŒŸ¸„Ÿ‚»‚ÌŽÀۂƉðŽß„ŸCƒAƒjƒ}Š”Ž®‰ïŽÐC“Œ‹žCpp. 5-8, 2000.

12j West, J.B., Robert, B.S., Andrew, M.L. and James, S.M.: Central nervous system.@In:High Altitude Medicine and Physiology 5th Ed.@CRC Press, USA, pp. 250-263, 2012.

13j Wu, X., Li, X.Y., Wang, J.T., Zhuang, Y. and Du, J.Y.:Effects of acute moderate hypoxia on human performance of arithmetic.@Aviat. Space and Environ. Med., 11, 391-395, 1998.

˜A—æ:§359-8513@é‹ÊŒ§Š‘òŽs•À–Ø3-2
@@@–h‰qˆã‰È‘åŠwZ@–h‰qˆãŠwŒ¤‹†ƒZƒ“ƒ^[ˆÙíŠÂ‹«‰q¶Œ¤‹†•”–å
@@@îà“c@–M•v
@@@E-mail:takada@ndmc.ac.jp